1
|
Kazemi N, Khorasgani MR, Noorbakhshnia M, Razavi SM, Narimani T, Naghsh N. Protective effects of a lactobacilli mixture against Alzheimer's disease-like pathology triggered by Porphyromonas gingivalis. Sci Rep 2024; 14:27283. [PMID: 39516514 PMCID: PMC11549306 DOI: 10.1038/s41598-024-77853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the pathogens involved in gingival inflammation, which may trigger neuroinflammatory diseases such as Alzheimer's disease (AD). This study aimed to investigate the protective (preventive and treatment) effects of a lactobacilli mixture combining Lactobacillus reuteri PTCC1655, Lactobacillus brevis CD0817, Lacticaseibacillus rhamnosus PTCC1637, and Lactobacillus plantarum PTCC1058 against P. gingivalis-induced gingival inflammation and AD-like pathology in rats. These probiotic strains exhibited cognitive enhancement effects, but this study proposed to assess their activity in a mixture. To propose a probable mechanism for P. gingivalis cognitive impairments, the TEs balance were analyzed in hippocampus and cortex tissues. Animals were divided into five groups: the control, lactobacilli, P. gingivalis, lactobacilli + P. gingivalis (prevention), and P. gingivalis + lactobacilli group (treatment) groups. The behavioral and histopathological changes were compared among them. Finally, The Trace elements (TEs) levels in the hippocampus and cortex tissues were analyzed. The palatal tissue sections of the P. gingivalis infected rats showed moderate inflammation with dense infiltration of inflammatory cells, a limited area of tissue edema, and vascular congestion. Additionally, passive avoidance learning and spatial memory were impaired. Histopathological tests revealed the presence of Aβ-positive cells in the P. gingivalis group. While the Aβ-positive cells decreased in the treatment group, their formation was inhibited in the preventive group. Administration of a mixture of lactobacilli (orally) effectively mitigated the gingival inflammation, Aβ production, and improved learning and memory functions. Moreover, Zn, Cu, and Mn levels in the hippocampus were dramatically elevated by P. gingivalis infection, whereas lactobacilli mixture mitigated these disruptive effects. The lactobacilli mixture significantly prevented the disruptive effects of P. gingivalis on gingival and brain tissues in rats. Therefore, new formulated combination of lactobacilli may be a good candidate for inhibiting the P. gingivalis infection and its subsequent cognitive effects. The current study aimed to evaluate the effects of a lactobacilli mixture to manage the disruptive effects of P. gingivalis infection on memory.
Collapse
Affiliation(s)
- Niloofar Kazemi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Seyed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Naghsh
- Department of Periodontology, Torabinejad Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Śmiga M, Siemińska K, Trindade SC, Gomes-Filho IS, Nobre dos Santos EK, Olczak T. Hemophore-like proteins produced by periodontopathogens are recognized by the host immune system and react differentially with IgG antibodies. J Oral Microbiol 2023; 15:2214455. [PMID: 37213663 PMCID: PMC10193874 DOI: 10.1080/20002297.2023.2214455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Aims Hemophore-like proteins sequester heme from host hemoproteins. We aimed to determine whether the host immune system can recognize not only Porphyromonas gingivalis HmuY but also its homologs expressed by other periodontopathogens, and how periodontitis influences the production of respective antibodies. Methods The reactivity of total bacterial antigens and purified proteins with serum IgG antibodies of 18 individuals with periodontitis and 17 individuals without periodontitis was examined by enzyme-linked immunosorbent assay (ELISA). To compare IgG reactivity between groups with and without periodontitis and within the various dilutions of sera, statistical analysis was performed using the Mann-Whitney U-test and two-way ANOVA test with the post-hoc Bonferroni test. Results Individuals with periodontitis produced IgG antibodies reacting more strongly not only with total P. gingivalis antigens (P = 0.0002; 1:400) and P. gingivalis HmuY (P = 0.0016; 1:100) but also with Prevotella intermedia PinA (P = 0.0059; 1:100), and with low efficiency with P. intermedia PinO (P = 0.0021; 1:100). No increase in the reactivity of IgG antibodies with Tannerella forsythia Tfo and P. gingivalis HusA was found in individuals with periodontitis. Conclusions Although hemophore-like proteins are structurally related, they are differentially recognized by the host immune system. Our findings point to specific antigens, mainly P. gingivalis HmuY and P. intermedia PinA, whose immunoreactivity could be further investigated to develop markers of periodontitis.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Klaudia Siemińska
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Soraya C. Trindade
- Laboratory of Oral Biology, Department of Health, Feira de Santana State University, Feira de Santana, Brazil
- Laboratory of Immunology and Molecular Biology, Institute of Health Science, Federal University of Bahia, Salvador, Brazil
| | - Isaac S. Gomes-Filho
- Laboratory of Oral Biology, Department of Health, Feira de Santana State University, Feira de Santana, Brazil
| | - Ellen K. Nobre dos Santos
- Laboratory of Immunology and Molecular Biology, Institute of Health Science, Federal University of Bahia, Salvador, Brazil
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
3
|
Calheira MC, Trindade SC, Falcão MML, Barbosa LSC, Carvalho GRB, Machado PRL, Gomes-Filho IS, de Jesus Campos E, de Carvalho-Filho PC, Xavier MT, de Farias APF, Filho JTRR, de Santana Passos-Soares J. Immunoassay standardization for the detection of immunoglobulin A (IgA) against Porphyromonas gingivalis antigens in saliva of individuals with and without leprosy. AMB Express 2021; 11:152. [PMID: 34792664 PMCID: PMC8602710 DOI: 10.1186/s13568-021-01312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023] Open
Abstract
Leprosy reactions are immune processes that cause neural damage in individuals with leprosy. As periodontitis is an infectious disease related to its development, specific antibodies to periodontal pathogens must be evaluated to better understand the humoral mechanisms underlying this relationship. Therefore, the objective of this study was to standardize an immunoassay to measure IgA specific to P. gingivalis antigens in the saliva of individuals with leprosy. An ELISA checkerboard titration was performed. A validation test involving 53 individuals with leprosy, 24 with and 19 without periodontitis, was conducted and a ROC curve constructed to calculate sensitivity and specificity. The coefficient of the optical densities was 2.21 and 2.66 for P. gingivalis crude extract and the recombinant protein HmuY, respectively. Sensitivity and specificity for the P. gingivalis crude extract were 66.7% and 73.7%, respectively, and for HmuY, were 62.5% and 52.6%, respectively. Specific recognition of P. gingivalis occurred predominantly in individuals with periodontitis, which validates the use of this test for studying periodontitis in individuals with leprosy. Trial registration CAEE 64476117.3.0000.0049, 21/07/2017, retrospectively registered
Collapse
|
4
|
In silico analysis as a strategy to identify candidate epitopes with human IgG reactivity to study Porphyromonas gingivalis virulence factors. AMB Express 2019; 9:35. [PMID: 30859419 PMCID: PMC6411804 DOI: 10.1186/s13568-019-0757-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis (Pg) is one of the main pathogens in chronic periodontitis (CP). Studies on the immunogenicity of its virulence factors may contribute to understanding the host response to infection. The present study aimed to use in silico analysis as a tool to identify epitopes from Lys-gingipain (Kgp) and neuraminidase virulence factors of the Pg ATCC 33277 strain. Protein sequences were obtained from the NCBI Protein Database and they were scanned for amino acid patterns indicative of MHC II binding using the MHC-II Binding Predictions tool from the Immune Epitope Database (IEDB). Peptides from different regions of the proteins were chemically synthesized and tested by the indirect ELISA method to verify IgG immunoreactivity in serum of subjects with CP and without periodontitis (WP). T cell epitope prediction resulted in 16 peptide sequences from Kgp and 18 peptide sequences from neuraminidase. All tested Kgp peptides exhibited IgG immunoreactivity whereas tested neuraminidase peptides presented low IgG immunoreactivity. Thus, the IgG reactivity to Kgp protein could be reaffirmed and the low IgG reactivity to Pg neuraminidase could be suggested. The novel peptide epitopes from Pg were useful to evaluate its immunoreactivity based on the IgG-mediated host response. In silico analysis was useful for preselecting epitopes for immune response studies in CP.
Collapse
|
5
|
Lin M, Hu Y, Wang Y, Kawai T, Wang Z, Han X. Different engagement of TLR2 and TLR4 in Porphyromonas gingivalis vs. ligature-induced periodontal bone loss. Braz Oral Res 2017; 31:e63. [PMID: 28832712 DOI: 10.1590/1807-3107bor-2017.vol31.0063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to investigate the roles of different Toll-like receptor (TLR) signaling in Porphyromonas gingivalis (P. gingivalis)-induced and ligature-induced experimental periodontal bone resorption in mice. Wild-type (WT), TLR2 knockout (KO), TLR4KO, and TLR2&4 KO mice with C57/BL6 background were divided into three groups: control, P. gingivalis infection, and ligation. Live P. gingivalis or silk ligatures were placed in the sulcus around maxillary second molars over a 2-week period. Images were captured by digital stereomicroscopy, and the bone resorption area was measured with ImageJ software. The protein expression level of gingival RANKL was measured by ELISA. The gingival mRNA levels of RANKL, IL-1β, TNF-α, and IL-10 were detected by RT-qPCR. The results showed that P. gingivalis induced significant periodontal bone resorption in WT mice and TLR2 KO mice but not in TLR4 KO mice or TLR2&4 KO mice. For all four types of mice, ligation induced significant bone loss compared with that in control groups, and this bone loss was significantly higher than that in the P. gingivalis infection group. RANKL protein expression was significantly increased in the ligation group compared with that in the control group for all four types of mice, and in the P. gingivalis infection group of WT, TLR2 KO, and TLR4 KO mice. Expression patterns of RANKL, IL-1β, TNF-α, and IL-10 mRNA were different in the P. gingivalis infection group and the ligation group in different types of mice. In summary, P. gingivalis-induced periodontal bone resorption is TLR4-dependent, whereas ligation-induced periodontal bone resorption is neither TLR2- nor TLR4-dependent.
Collapse
Affiliation(s)
- Mei Lin
- Beijing ChaoYang Hospital affiliated with Capital Medical University, Department of Stomatology, Beijing, China
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Yuhua Wang
- Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, Department of Prosthodontics, Shanghai Key Laboratory, Shanghai, China
| | - Toshihisa Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Zuomin Wang
- Beijing ChaoYang Hospital affiliated with Capital Medical University, Department of Stomatology, Beijing, China
| | - Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| |
Collapse
|
6
|
Śmiga M, Bielecki M, Olczak M, Smalley JW, Olczak T. Anti-HmuY antibodies specifically recognize Porphyromonas gingivalis HmuY protein but not homologous proteins in other periodontopathogens. PLoS One 2015; 10:e0117508. [PMID: 25658942 PMCID: PMC4320075 DOI: 10.1371/journal.pone.0117508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022] Open
Abstract
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Marcin Bielecki
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - John W. Smalley
- School of Dentistry, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
- * E-mail:
| |
Collapse
|
7
|
Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood 2012; 120:3360-70. [PMID: 22932793 DOI: 10.1182/blood-2011-09-378851] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
β(2)-glycoprotein I (β(2)GPI) is the major antigenic target for antiphospholipid Abs. Anti-β(2)GPI Abs are a heterogeneous population of Igs targeting all domains of the molecule. Abs specific to β(2)GPI domain I are strongly associated with thrombosis and obstetric complications. In the present study, we sought to understand the possible pathogenic mechanism for this subset of anti-β(2)GPI Abs, investigating their potential cross-reactivity with other self-proteins involved in inflammatory or coagulant events. We compared the amino acid sequence of the β(2)GPI domain I with human proteins in a protein databank and identified a peptide sharing 88% identity with an epitope of human TLR4. A high percentage of patients with antiphospholipid syndrome (41%) and systemic lupus erythematosus (50%) presented serum IgG specific to this peptide. Anti-β(2)GPI peptide Abs binding the TLR4 were able to induce NF-κB activation in HEK293 cells that were stably transfected with the TLR4 gene. Anti-β(2)GPI peptide Abs induced activation of TLR4 and triggered interleukin-1 receptor-associated kinase phosphorylation and NF-κB translocation, promoting VCAM expression on endothelial cells and TNF-α release by monocytes. In conclusion, our observations suggest a novel pathogenic mechanism in the TLR4 stimulation by anti-β(2)GPI peptide Abs that links adaptive immune responses with innate immunity in antiphospholipid syndrome and systemic lupus erythematosus.
Collapse
|
8
|
Trindade SC, Olczak T, Gomes-Filho IS, Moura-Costa LF, Cerqueira EMM, Galdino-Neto M, Alves H, Carvalho-Filho PC, Xavier MT, Meyer R. Induction of interleukin (IL)-1β, IL-10, IL-8 and immunoglobulin G by Porphyromonas gingivalis HmuY in humans. J Periodontal Res 2011; 47:27-32. [DOI: 10.1111/j.1600-0765.2011.01401.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|