1
|
Wijaya M, Delicia D, Waturangi DE. Control of pathogenic bacteria using marine actinobacterial extract with antiquorum sensing and antibiofilm activity. BMC Res Notes 2023; 16:305. [PMID: 37919800 PMCID: PMC10623884 DOI: 10.1186/s13104-023-06580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE The objectives of this research were to screen the anti-quorum sensing and antibiofilm activity of marine actinobacteria, isolated from several aquatic environments in Indonesia against several pathogenic bacteria, such as Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa. RESULTS Ten out of 40 actinobacteria were found to have anti-quorum sensing activity against wild-type Chromobacterium violaceum (ATCC 12472); however, the validation assay showed that only eight of 10 significantly inhibited the quorum sensing system of Chromobacterium violaceum CV026. The crude actinobacteria extracts inhibited and disrupted biofilm formation produced by pathogens. The highest antibiofilm inhibition was discovered in isolates 11AC (90%), 1AC (90%), CW17 (84%), TB12 (94%), 20PM (85%), CW01 (93%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. The highest biofilm destruction activity was observed for isolate 1AC (77%), 20PM (85%), 16PM (72%), CW01 (73%), 18PM (82%), 16PM (63%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. Actinobacteria isolates demonstrated promising anti-quorum and/or antibiofilm activity, interfering with the biofilm formation of tested pathogens. Appropriate formulations of these extracts could be developed as effective disinfectants, eradicating biofilms in many industries.
Collapse
Affiliation(s)
- Marco Wijaya
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Dea Delicia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia.
| |
Collapse
|
2
|
Highmore CJ, Melaugh G, Morris RJ, Parker J, Direito SOL, Romero M, Soukarieh F, Robertson SN, Bamford NC. Translational challenges and opportunities in biofilm science: a BRIEF for the future. NPJ Biofilms Microbiomes 2022; 8:68. [PMID: 36038607 PMCID: PMC9424220 DOI: 10.1038/s41522-022-00327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Biofilms are increasingly recognised as a critical global issue in a multitude of industries impacting health, food and water security, marine sector, and industrial processes resulting in estimated economic cost of $5 trillion USD annually. A major barrier to the translation of biofilm science is the gap between industrial practices and academic research across the biofilms field. Therefore, there is an urgent need for biofilm research to notice and react to industrially relevant issues to achieve transferable outputs. Regulatory frameworks necessarily bridge gaps between different players, but require a clear, science-driven non-biased underpinning to successfully translate research. Here we introduce a 2-dimensional framework, termed the Biofilm Research-Industrial Engagement Framework (BRIEF) for classifying existing biofilm technologies according to their level of scientific insight, including the understanding of the underlying biofilm system, and their industrial utility accounting for current industrial practices. We evidence the BRIEF with three case studies of biofilm science across healthcare, food & agriculture, and wastewater sectors highlighting the multifaceted issues around the effective translation of biofilm research. Based on these studies, we introduce some advisory guidelines to enhance the translational impact of future research.
Collapse
Affiliation(s)
- C J Highmore
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - G Melaugh
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - R J Morris
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - J Parker
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - S O L Direito
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - M Romero
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK
| | - F Soukarieh
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK
- Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK
| | - S N Robertson
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK.
- Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - N C Bamford
- NBIC Interdisciplinary Research Fellows, UK National Biofilms Innovation Centre (NBIC), Southampton, UK.
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
3
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|