Menezes LG, Uzuelli JA, Tefé-Silva C, Ramos SG, Santos JETD, Martinez JAB. Acute lung injury induced by the intravenous administration of cigarette smoke extract.
J Bras Pneumol 2013;
39:39-47. [PMID:
23503484 PMCID:
PMC4075806 DOI:
10.1590/s1806-37132013000100006]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/17/2012] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE
To investigate the acute effects of intravenous administration of cigarette smoke extract (CSE) on histological, inflammatory, and respiratory function parameters in rats, as well as to compare this potential acute lung injury (ALI) model with that with the use of oleic acid (OA).
METHODS
We studied 72 Wistar rats, divided into four groups: control (those injected intravenously with saline); CSE (those injected intravenously with CSE and saline); OA (those injected intravenously with saline and OA); and CSE/OA (those injected intravenously with CSE and OA).
RESULTS
Mean lung compliance was significantly lower in the OA and CSE/OA groups (2.12 ± 1.13 mL/cmH2O and 1.82 ± 0.77 mL/cmH2O, respectively) than in the control group (3.67 ± 1.38 mL/cmH2O). In bronchoalveolar lavage fluid, the proportion of neutrophils was significantly higher in the OA and CSE/OA groups than in the control group, as was the activity of metalloproteinases 2 and 9. Pulmonary involvement, as assessed by morphometry, was significantly more severe in the OA and CSE/OA groups (72.9 ± 13.8% and 77.6 ± 18.0%, respectively) than in the control and CSE groups (8.7 ± 4.1% and 32.7 ± 13.1%, respectively), and that involvement was significantly more severe in the CSE group than in the control group.
CONCLUSIONS
The intravenous administration of CSE, at the doses and timing employed in this study, was associated with minimal ALI. The use of CSE did not potentiate OA-induced ALI. Additional studies are needed in order to clarify the potential role of this model as a method for studying the mechanisms of smoking-induced lung injury.
Collapse