1
|
Bacevich BM, Smith RDJ, Reihl AM, Mazzocca AD, Hutchinson ID. Advances with Platelet-Rich Plasma for Bone Healing. Biologics 2024; 18:29-59. [PMID: 38299120 PMCID: PMC10827634 DOI: 10.2147/btt.s290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Despite significant advances in the understanding and delivery of osteosynthesis, fracture non-union remains a challenging clinical problem in orthopaedic surgery. To bridge the gap, basic science characterization of fracture healing provides a platform to identify and target biological strategies to enhance fracture healing. Of immense interest, Platelet-rich plasma (PRP) is a point of care orthobiologic that has been extensively studied in bone and soft tissue healing given its relative ease of translation from the benchtop to the clinic. The aim of this narrative review is to describe and relate pre-clinical in-vitro and in-vivo findings to clinical observations investigating the efficacy of PRP to enhance bone healing for primary fracture management and non-union treatment. A particular emphasis is placed on the heterogeneity of PRP preparation techniques, composition, activation strategies, and delivery. In the context of existing data, the routine use of PRP to enhance primary fracture healing and non-union management cannot be supported. However, it is acknowledged that extensive heterogeneity of PRP treatments in clinical studies adds obscurity; ultimately, refinement (and consensus) of PRP treatments for specific clinical indications, including repetition studies are warranted.
Collapse
Affiliation(s)
- Blake M Bacevich
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Richard David James Smith
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Alec M Reihl
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Augustus D Mazzocca
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
- Medical Director, Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Brigham, Boston, MA, USA
| | - Ian D Hutchinson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| |
Collapse
|
2
|
Xu Z, Sun Y, Dai H, Ma Y, Bing H. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144535. [PMID: 35889410 PMCID: PMC9318678 DOI: 10.3390/molecules27144535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
The skull defects are challenging to self-heal, and autologous bone graft repair has numerous drawbacks. The scaffolds for the rapid and effective repair of skull defects have become an important research topic. In this study, polyvinyl alcohol (PVA)/β-tricalcium phosphate(β-TCP) composite scaffolds containing icariin (ICA) were prepared through direct-ink three-dimensional (3D) printing technology. β-TCP in the composite scaffold had osteoconductive capability, and the ICA molecule had osteoinductive capacity. The β-TCP and ICA components in the composite scaffold can enhance the capability to repair skull defects. We show that ICA exhibited a slow-release behaviour within 80 days. This behaviour helped the scaffold to continuously stimulate the formation of new bone. The results of in vitro cell compatibility experiments showed that the addition of ICA molecules contributed to the adhesion and proliferation of MC-3T3-E1 cells. The level of alkaline phosphatase secretion demonstrated that the slow release of ICA can promote the osteogenic differentiation of MC-3T3-E1 cells. The introduction of ICA molecules accelerated the in situ bone regeneration in in vivo. It is concluded that the 3D-printed PVA scaffold with β-TCP and ICA has a wide range of potential applications in the field of skull defect treatment.
Collapse
|
3
|
Thong FY, Mansor A, Ramalingam S, Yusof N. Does bone marrow aspirate help enhance the integration of gamma irradiated allograft bone? Cell Tissue Bank 2020; 21:107-117. [PMID: 31894432 DOI: 10.1007/s10561-019-09804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Bone allografts donated by other individuals offer a viable alternative to autograft. Risks of disease transmission are overcome by sterilizing the bone; unfortunately sterilization methods generally affect bone functional properties including osteogenic potential and biomechanical integrity. This study aimed to determine any enhancement effect when gamma sterilised allografts was impregnated with autologous bone marrow in improving the rate and quality of integration in metaphyseal-tibial defects of rabbits. Almost all subjects showed 50% of the defect being covered by new bones by the third week and smaller residual defect size in the treated group at the fifth week. Hounsfield units at the defect site showed increasing healing in all samples, with the treated group having an apparent advantage although insignificant (p > 0.05). In the histopathological score evaluating healing over cortical and cancellous bone at the fracture site showed only slight variations between the groups (p > 0.05). Therefore no enhanced healing by the autologous bone marrow was observed when added to the bone allografts in treating the unicortical defects.
Collapse
Affiliation(s)
- Fu Yuen Thong
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azura Mansor
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saravana Ramalingam
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norimah Yusof
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Szponder T, Wessely-Szponder J, Sobczyńska-Rak A, Żylińska B, Radzki RP, Polkowska I. Application of Platelet-rich Plasma and Tricalcium Phosphate in the Treatment of Comminuted Fractures in Animals. In Vivo 2019; 32:1449-1455. [PMID: 30348700 DOI: 10.21873/invivo.11398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
AIM To assess the applicability of β-tri-calcium phosphate (TCP) and platelet-rich plasma (PRP) in the treatment of comminuted fractures in small animals. MATERIAL AND METHODS The experimental study was carried out on 16 New Zealand White rabbits. After creating the bone defect and performing tibial osteotomy, TCP implants containing activated PRP were introduced into the fracture and the defect. The fracture was stabilised using external fixators or intramedullary nails. After 12 weeks, the animals were euthanised, and radiological, histological, scanning electron microscopy and peripheral quantitative computed tomography examinations were performed. The analysis also covered the results of fracture treatment in 37 small animals (cats and dogs) in which treatment with TCP containing PRP was used as an alternative to cancellous bone implantation. RESULTS Correct bone union was observed in the experimental groups, TCP remained visible at the site of the fracture after 12 weeks. In the clinical application in small animals, bone union was observed in over 91% of treated animals. CONCLUSION β-TCP and activated PRP may be an effective method of bone union enhancement in the treatment of comminuted fractures in small animals.
Collapse
Affiliation(s)
- Tomasz Szponder
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland .,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Aleksandra Sobczyńska-Rak
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Beata Żylińska
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Radosław P Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Izabella Polkowska
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| |
Collapse
|
5
|
Spalthoff S, Zimmerer R, Dittmann J, Kokemüller H, Tiede M, Flohr L, Korn P, Gellrich NC, Jehn P. Heterotopic bone formation in the musculus latissimus dorsi of sheep using β-tricalcium phosphate scaffolds: evaluation of different seeding techniques. Regen Biomater 2017; 5:77-84. [PMID: 29644089 PMCID: PMC5888254 DOI: 10.1093/rb/rbx029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022] Open
Abstract
Osseous reconstruction of large bone defects remains a challenge in oral and maxillofacial surgery. In addition to autogenous bone grafts, which despite potential donor-site mobility still represent the gold standard in reconstructive surgery, many studies have investigated less invasive alternatives such as in vitro cultivation techniques. This study compared different types of seeding techniques on pure β-tricalcium phosphate scaffolds in terms of bone formation and ceramic resorption in vivo. Cylindrical scaffolds loaded with autologous cancellous bone, venous blood, bone marrow aspirate concentrate or extracorporeal in vitro cultivated bone marrow stromal cells were cultured in sheep on a perforator vessel of the musculus latissimus dorsi over a 6-month period. Histological and histomorphometric analyses revealed that scaffolds loaded with cancellous bone were superior at promoting heterotopic bone formation and ceramic degradation, with autogenous bone and bone marrow aspirate concentrate inducing in vivo formation of vital bone tissue. These results confirm that autologous bone constitutes the preferred source of osteoinductive and osteogenic material that can reliably induce heterotopic bone formation in vivo.
Collapse
Affiliation(s)
- Simon Spalthoff
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
- Correspondence address. Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany. Tel: +49-511-532-4879; Fax: +49-511-532-18598; E-mail:
| | - Rüdiger Zimmerer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Jan Dittmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Horst Kokemüller
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Marco Tiede
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Laura Flohr
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Philippe Korn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Philipp Jehn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| |
Collapse
|
6
|
Samuel G, Menon J, Thimmaiah S, Behera G. Role of isolated percutaneous autologous platelet concentrate in delayed union of long bones. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2017; 28:985-990. [PMID: 29167980 DOI: 10.1007/s00590-017-2077-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE The objective of this study is to evaluate the efficacy of percutaneous platelet concentrate (PC) injection in increasing the chances of attaining union in delayed union of long bones and to know whether the time taken for union decreases with use of PC. METHODS Forty delayed unions (15-30 weeks old) were randomized into a study group in which autologous PC prepared by blood bank centrifuge was percutaneously injected at the fracture site under image intensifier after activation with 10% calcium gluconate and a control group where patients were observed over time. Follow-up was every 6 weeks till fracture union. At each follow-up visit clinical and radiological parameters of union were assessed. RESULTS Percentage union was 78% (18/23) in PC group and 59% (10/17) in control group, respectively (p = 0.296). The mean time to fracture union treated with PC (15.33 ± 9.91 weeks) was not different from the control group (13.10 ± 7.21 weeks; p = 0.540). In the PC group union is seen in 12 weeks after PC injection in 60 per cent of the cases. CONCLUSION Isolated percutaneous PC injection increases union rates in delayed union of long bones. The results were, however, not statistically significant but show high positive association. Further studies are required to recommend routine use of PC injection.
Collapse
Affiliation(s)
- Gipson Samuel
- Department of Orthopaedics, Pondicherry Institute of Medical Sciences (PIMS), PIMS Staff Quarters, PIMS Campus, Kalapet, Pondicherry, Puducherry, 605014, India
| | - Jagdish Menon
- Department of Orthopaedics, Jawaharlal Institute of Post Graduate Medical Education, Pondicherry, Puducherry, 605006, India
| | | | - Gayadhar Behera
- Department of Orthopaedics, Pondicherry Institute of Medical Sciences (PIMS), PIMS Staff Quarters, PIMS Campus, Kalapet, Pondicherry, Puducherry, 605014, India.
| |
Collapse
|
7
|
Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. INTERNATIONAL ORTHOPAEDICS 2016; 41:221-237. [PMID: 27888295 DOI: 10.1007/s00264-016-3342-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE The treatment of large bone defects represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have also been used to further improve bone healing. Among these, platelet-rich plasma (PRP) is the most exploited strategy. The aim of the present study was to systematically review the available literature to identify: 1) preclinical in-vivo results supporting the rational of PRP use for bone healing; 2) evidence from the clinical practice on the actual clinical benefit of PRP for the treatment of fractures and complications such as delayed unions and non-unions. METHODS A systematic review of the literature was performed on the application of PRP in bone healing, using the following inclusion criteria: pre-clinical and clinical reports of any level of evidence, written in English language, published in the last 20 years (1996-2016), on the use of PRP to stimulate long-bone defect treatment, with focus on fracture and delayed/non-unions healing. RESULTS The search in the Pubmed database identified 64 articles eligible for inclusion: 45 were preclinical in-vivo studies and 19 were clinical studies. Despite the fact that the overall pre-clinical results seem to support the benefit of PRP in 91.1 % of the studies, a more in depth analysis underlined a lower success rate, with a positive outcome of 84.4 % in terms of histological analysis, and even lower values considering radiological and biomechanical results (75.0 % and 72.7 % positive outcome respectively). This was also mirrored in the clinical literature, where the real benefit of PRP use to treat fractures and non-unions is still under debate. CONCLUSION Overall, the available literature presents major limitations in terms of low quality and extreme heterogeneity, which hamper the possibility to optimize PRP treatment and translate it into a real clinical benefit despite positive preclinical findings on its biological potential to favour bone healing.
Collapse
|
8
|
Suchetha A, Lakshmi P, Bhat D, Mundinamane DB, Soorya KV, Bharwani GA. Platelet concentration in platelet concentrates and periodontal regeneration-unscrambling the ambiguity. Contemp Clin Dent 2015; 6:510-6. [PMID: 26681857 PMCID: PMC4678550 DOI: 10.4103/0976-237x.169850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Context: Platelet-rich-plasma (PRP) and Platelet-rich-fibrin (PRF) are extensively used autologous platelet concentrates in periodontal regeneration, and PRF has a better efficacy as compared to PRP. The rationale for this difference has often been attributed to the difference in the structure of the fibrin matrix. However, the effect of concentration of platelets on the regenerative potential of these concentrates is obscure. Aims: The study was conducted to evaluate and compare, clinically and radiographically, the efficacy of PRF and PRP in the treatment of periodontal endosseous defects and to assess the effect of platelet concentration on periodontal regeneration. Materials and Methods: Twenty intrabony defects were selected and divided into two groups randomly by the coin toss method. Group I received PRP and Group II subjects were treated with PRF. The platelet counts in PRP and PRF were analyzed. Clinical and radiological parameters were assessed at baseline and 3, 6, and 9 months postoperatively. Statistical Analysis: Kruskal–Wallis Chi-square test, Wilcoxon signed rank test, t-test, and Spearman's rank correlation were used for statistical analysis of data. Results: There was statistically significant improvement in all the parameters in the two groups except in relation to gingival recession. There was a statistically significant difference between the platelet count in Group I and Group II (P = 0.002). Conclusion: PRP and PRF appear to have nearly comparable effects in terms of periodontal regeneration. The concentration of platelets appears to play a paradoxical role in regeneration. The regenerative potential of platelets appears to be optimal within a limited range.
Collapse
Affiliation(s)
- A Suchetha
- Department of Periodontics, D A P M R V Dental College, Bengaluru, Karnataka, India
| | - P Lakshmi
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, India
| | - Divya Bhat
- Department of Periodontics, D A P M R V Dental College, Bengaluru, Karnataka, India
| | | | - K V Soorya
- Department of Periodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry, India
| | - G Ashit Bharwani
- Department of Periodontics, K. M. Shah Dental College and Hospital, Vadodara, Gujarat, India
| |
Collapse
|
9
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
10
|
New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846045. [PMID: 26075269 PMCID: PMC4436449 DOI: 10.1155/2015/846045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.
Collapse
|
11
|
Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res 2014; 472:3789-97. [PMID: 24599650 PMCID: PMC4397746 DOI: 10.1007/s11999-014-3548-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND During lower limb lengthening, poor bone regeneration is a devastating complication. Several local or systemic applications have been used to promote osteogenesis, and biologic stimulations are gaining attention, but their utility has not been proven in this setting. QUESTIONS/PURPOSES In patients undergoing bilateral tibial lengthening, we compared those receiving an osteotomy site injection of autologous bone marrow aspirate concentrate (BMAC) plus platelet-rich plasma (PRP) with those not receiving such an injection in terms of external fixator index (time in external fixation divided by amount of lengthening), full weightbearing index (time until a patient was permitted to do full weightbearing divided by amount of lengthening), four cortical healing indexes (time until each cortical union divided by amount of lengthening), and callus shape and type. METHODS Twenty-two patients (44 tibias) undergoing bilateral tibial lengthening enrolled in this randomized trial. Two patients were excluded, one due to insufficient radiographic evaluation and one who was lost to followup, leaving 20 patients (40 segments) for inclusion. Ten patients (20 segments) received BMAC combined with PRP injection (treatment group) and 10 patients (20 segments) received no injection (control group). All patients underwent stature lengthening for familial short stature with the lengthening over nail technique. Autologous BMAC combined with PRP was injected at the tibial osteotomy site at the end of the index surgery. Mean distraction rates were similar between groups (0.75 mm/day in the treatment group versus 0.72 mm/day in the control group; p = 0.24). Full weightbearing was permitted when we observed radiographic evidence of healing at two cortices; this assessment was made by the surgeon who was blinded to the treatment each patient received. Minimum followup was 24 months (mean, 28 months; range, 24-34 months). RESULTS There was no difference in mean external fixator index between groups. However, mean cortical healing indexes (anterior/posterior/medial/lateral) were 1.14/0.81/0.96/0.88 months/cm in the treatment group and 1.47/1.26/1.42/1.22 months/cm in the control group (all p < 0.001), showing faster healing in the treatment group at each cortex. Full weightbearing was permitted earlier in the treatment group than in the control group (index: 0.99 months/cm and 1.38 months/cm, respectively, p < 0.001). Callus shape and type were not different between groups. CONCLUSIONS Autologous BMAC combined with PRP injection at the osteotomy site helped improve bone healing in distraction osteogenesis of the tibia, although the effect size was small. LEVEL OF EVIDENCE Level I, therapeutic study. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Dong Hoon Lee
- Department of Orthopaedic Surgery, Severance Hospital, College of Medicine, Yonsei University, 134 Sinchondong, CPO Box 8044, Seoul, Republic of Korea
| | - Keun Jung Ryu
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, 351 Yatap-dong, Bundang-gu, Sung-nam, Kyungki-do Republic of Korea
| | - Jin Woo Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, 351 Yatap-dong, Bundang-gu, Sung-nam, Kyungki-do Republic of Korea
| | - Kyung Chung Kang
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, 351 Yatap-dong, Bundang-gu, Sung-nam, Kyungki-do Republic of Korea
| | - Young Rak Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, 351 Yatap-dong, Bundang-gu, Sung-nam, Kyungki-do Republic of Korea
| |
Collapse
|
12
|
Abstract
Presently, bioceramic materials have been extensively used in spinal surgery as bone grafts; however, there are some limitations for bioceramic materials. Calcium sulfate is rapidly absorbed in vivo, the degradation of which often occurs prior to the formation of new bones. Hydroxyapatite (HA) is hardly absorbed, which blocks the formation of new bones and remodeling, and results in poor local stability or permanent stress concentration. Only β-tricalcium phosphate (β-TCP) is relatively balanced between scaffold absorption and bone formation. And it is a good biodegradable ceramic material that could supply a large quantity of calcium ion and sulfate ion as well as scaffold structure for bone regeneration. However, the problem of single β-TCP is lack of osteoinductivity and osteogenicity, which restricts its application. Therefore β-TCP composite materials have been used in the field of orthopaedics in recent decades, which fully use excellent properties of other bone repairing materials, such as biodegradability, osteoinductivity, osteogenicity and osteoconductivity. These materials make up for the deficiencies of single β-TCP and endow β-TCP with more biological and physical properties.
Collapse
Affiliation(s)
- Bin Liu
- Center for Medical Device Evaluation of State Food and Drug Administration, Beijing, China.
| | | |
Collapse
|