1
|
Gach J, Grzelczyk J, Strzała T, Boratyński F, Olejniczak T. Microbial Metabolites of 3- n-butylphthalide as Monoamine Oxidase A Inhibitors. Int J Mol Sci 2023; 24:10605. [PMID: 37445788 DOI: 10.3390/ijms241310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Novel compounds with antidepressant activity via monoamine oxidase inhibition are being sought. Among these, derivatives of 3-n-butylphthalide, a neuroprotective lactone from Apiaceae plants, may be prominent candidates. This study aimed to obtain the oxidation products of 3-n-butylphthalide and screen them regarding their activity against the monoamine oxidase A (MAO-A) isoform. Such activity of these compounds has not been previously tested. To obtain the metabolites, we used fungi as biocatalysts because of their high oxidative capacity. Overall, 37 strains were used, among which Penicillium and Botrytis spp. were the most efficient, leading to the obtaining of three main products: 3-n-butyl-10-hydroxyphthalide, 3-n-butylphthalide-11-oic acid, and 3-n-butyl-11-hydroxyphthalide, with a total yield of 0.38-0.82 g per g of the substrate, depending on the biocatalyst used. The precursor-3-n-butylphthalide and abovementioned metabolites inhibited the MAO-A enzyme; the most active was the carboxylic acid derivative of the lactone with inhibitory constant (Ki) < 0.001 µmol/L. The in silico prediction of the drug-likeness of the metabolites matches the assumptions of Lipinski, Ghose, Veber, Egan, and Muegge. All the compounds are within the optimal range for the lipophilicity value, which is connected to adequate permeability and solubility.
Collapse
Affiliation(s)
- Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Tomasz Strzała
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
2
|
Zhang A, Li J, Wang S, Xu Y, Li Q, Wu Z, Wang C, Meng H, Zhang J. Rapid and improved oral absorption of N-butylphthalide by sodium cholate-appended liposomes for efficient ischemic stroke therapy. Drug Deliv 2021; 28:2469-2479. [PMID: 34766542 PMCID: PMC8592624 DOI: 10.1080/10717544.2021.2000678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
As a multi-target drug to treat ischemic stroke, N-butylphthalide (NBP) is extremely water-insoluble and exhibits limited oral bioavailability, impeding its wide oral application. Effective treatment of ischemic stroke by NBP requires timely and efficient drug exposure, necessitating the development of new oral formulations. Herein, liposomes containing biosurfactant sodium cholate (CA-liposomes) were systemically investigated as an oral NBP delivery platform because of its high biocompatibility and great potential for clinical applications. The optimized liposomes have a uniform hydrodynamic size of 104.30 ± 1.60 nm and excellent encapsulation efficiency (93.91 ± 1.10%). Intriguingly, NBP-loaded CA-liposomes produced rapid drug release and the cumulative release was up to 88.09 ± 4.04% during 12 h while that for NBP group was only 6.79 ± 0.99%. Caco-2 cell monolayer assay demonstrated the superior cell uptake and transport efficiency of NBP-loaded CA-liposomes than free NBP, which was mediated by passive diffusion via transcellular and paracellular routes. After oral administration to rats, NBP-loaded CA-liposomes exhibited rapid and almost complete drug absorption, with a tmax of 0.70 ± 0.14 h and an absolute bioavailability of 92.65% while NBP suspension demonstrated relatively low bioavailability (21.7%). Meanwhile, NBP-loaded CA-liposomes produced 18.30-fold drug concentration in the brain at 5 min compared with NBP suspension, and the brain bioavailability increased by 2.48-fold. As expected, NBP-loaded CA-liposomes demonstrated significant therapeutic efficacy in a middle cerebral artery occlusion rat model. Our study provides new insights for engineering oral formulations of NBP with fast and sufficient drug exposure against ischemic stroke in the clinic.
Collapse
Affiliation(s)
- Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbo Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuaishuai Wang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaru Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qinglian Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Wu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenxu Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjie Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-Derived Compounds in Alleviating Tau-Mediated Neurodegeneration. Curr Mol Pharmacol 2021; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recently unsuccessful phase III clinical trials related to Aβ-targeted therapeutic drugs indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently-available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies that focused on medicinal plant-derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We mainly considered the studies that focused on Tau protein as a therapeutic target. We reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| |
Collapse
|
4
|
SFC-MS/MS method for simultaneous determination of nimodipine and 3-n-butylphthalide in beagle plasma: application to pharmacokinetic interaction study. Bioanalysis 2020; 12:1509-1519. [PMID: 33078962 DOI: 10.4155/bio-2020-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aim: Nimodipine and 3-n-butylphthalide are co-administered to treat vascular dementia, but the pharmacokinetic interaction between the two drugs is still unknown. Therefore, a robust, high-throughput and economical supercritical fluid chromatography-ESI-MS/MS method has been initially developed to simultaneously determine nimodipine and 3-n-butylphthalide in beagle plasma, in order to study the safety of co-administration. Materials & methods: After a simple protein precipitation procedure, isocratic elution with mobile phase of CO2 and methanol (containing 0.3% formic acid and 2 mM ammonium acetate) was applied to minimize run time and facilitate sensitive and high-throughput bioanalysis. The method was fully validated according to US FDA Guidance. The validated method was then successfully applied in a pharmacokinetic interaction study. Results: The results indicated there is no significant pharmacokinetic interaction between the two drugs.
Collapse
|
5
|
Abdoulaye IA, Guo YJ. A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5012341. [PMID: 28053983 PMCID: PMC5178327 DOI: 10.1155/2016/5012341] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 01/26/2023]
Abstract
The research of alternative treatment for ischemic stroke and degenerative diseases has always been a priority in neurology. 3-N-Butylphthalide (NBP), a family of compounds initially isolated from the seeds of Apium graveolens Linn., has shown significant neuroprotective effects. Previous extensive studies have demonstrated that NBP promotes a better poststroke outcome and exerts a multitargeted action on several mechanisms, from oxidative stress to mitochondrial dysfunction to apoptosis to inflammation. Additionally, recent findings on several neurological disorders have shown that NBP's beneficial effects extend beyond the management of stroke. However, despite the increasing number of studies toward a better understanding and the rapid advances made in therapeutic options, to date, dl-3-N-butylphthalide, a synthetic variation of l-3-N-butylphthalide, remains the only clinically approved anti-ischemic agent in China, stressing the difficulties for a viable and effective transition from experimental to clinical practice. Events indicate that NBP, due to its multitargeted effect and the adaptability of its basic structure, can be an important game changer and a precursor to a whole new therapeutic approach to several neurological conditions. The present review discusses recent advances pertaining to the neuroprotective mechanisms of NBP-derived compounds and the possibility of their clinical implementation in the management of various neurological conditions.
Collapse
Affiliation(s)
- Idriss Ali Abdoulaye
- Department of Neurology, The Southeast University Affiliated Zhong Da Hospital, No. 87 Dingjiaqiao, Nanjing, Jiangsu Province 210009, China
| | - Yi Jing Guo
- Department of Neurology, The Southeast University Affiliated Zhong Da Hospital, No. 87 Dingjiaqiao, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|