Vasudevan S, Durai RD, Chellappan DR, Narayanan VHB, Prabu PC, Solomon AP. A polymer-based anti-quorum catheter coating to challenge MDR Staphylococcus aureus: in vivo and in vitro approaches.
J Antimicrob Chemother 2020;
74:1618-1626. [PMID:
30863862 DOI:
10.1093/jac/dkz094]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND
MDR Staphylococcus aureus is a major aetiological agent of catheter-associated infections. A quorum sensing targeted drug development approach proves to be an effective alternative strategy to combat such infections.
METHODS
Intravenous catheters were coated with polymethacrylate copolymers loaded with the antivirulent compound 2-[(methylamino)methyl]phenol (2MAMP). The in vitro drug release profile and kinetics were established. The anti-biofilm effect of the coated catheters was tested against clinical isolates of MDR S. aureus. The in vivo studies were carried out using adult male Wistar rats by implanting coated catheters in subcutaneous pockets. Histopathological analysis was done to understand the immunological reactions induced by 2MAMP.
RESULTS
A uniform catheter coating of thickness 0.1 mm was achieved with linear sustained release of 2MAMP for 6 h. The coating formulation was cytocompatible. The in vitro and in vivo anti-adherence studies showed reduced bacterial accumulation in coated catheters after 48 h. The histopathological results confirmed that the coated catheter did not bring about any adverse inflammatory response.
CONCLUSIONS
The developed anti-quorum-coated catheter that is non-toxic and biocompatible has the potential to be used in other medical devices, thereby preventing catheter-associated infections.
Collapse