1
|
Lima ETS, Santos VLS, Mota WJS, Martins FS, de Albuquerque-Junior RLC, Santos ALS, Oliveira SSC, de Lima JA, Santos ADJ, Dos Santos CP, Jain S, Souto EB, Cardoso JC, Severino P. Green Propolis Extract-Mediated Synthesis of Biogenic Silver Nanoparticles: In Vitro Antileishmanial and Antibacterial Activities, Cytotoxicity and Ex Vivo Irritation Testing. Chem Biodivers 2025:e02348. [PMID: 40293341 DOI: 10.1002/cbdv.202402348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
This study describes the green synthesis, characterization, and biological evaluation of silver nanoparticles (AgNPs) obtained from green propolis (AgNPs-PRO). Before nanoparticles synthesis, a hydroethanolic green propolis extract (GPE) was obtained through ultrasound-assisted extraction and characterized by high-performance liquid chromatography, revealing the artepilin C as the most abundant phenolic compound in its composition, followed by 4,5-dicaffeoylquinic acid and drupanin. The analysis of synthesized AgNPs by UV-Vis spectroscopy showed a characteristic absorption band at 430 nm. Dynamic light scattering analysis revealed mean hydrodynamic particle sizes ranging from 88 to 115 nm, with a polydispersity index between 0.229 ± 0.006 and 0.365 ± 0.054. Fourier-transform infrared spectroscopy confirmed that functional groups present in GPE contribute to the reduction and stabilization of AgNPs. Differential scanning calorimetry and transmission electron microscopy confirmed that AgNPs were obtained. GPE showed leishmanicidal activity against promastigote forms of Leishmania amazonensis, with a half-maximal inhibitory concentration (IC50) of 11.87 µg/mL and a selectivity index (SI) of 12.52. Antibacterial activity of the AgNPs, assessed via the disk diffusion method, revealed inhibition zones against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive), and Candida albicans strains. The HET-CAM test indicated no signs of irritation, suggesting the biocompatibility of the developed AgNPs.
Collapse
Affiliation(s)
- Erica Tirzah S Lima
- Institute of Research and Technology, University Tiradentes, Aracaju, Brazil
| | - Victoria L S Santos
- Institute of Research and Technology, University Tiradentes, Aracaju, Brazil
| | - Wanessa J S Mota
- Institute of Research and Technology, University Tiradentes, Aracaju, Brazil
| | - Frederico S Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - André L S Santos
- Department of General Microbiology, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for the Advanced Study of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Department of General Microbiology, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for the Advanced Study of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cochiran P Dos Santos
- Department of Physics and Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, Brazil
| | - Sona Jain
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Ireland
| | - Juliana C Cardoso
- Institute of Research and Technology, University Tiradentes, Aracaju, Brazil
| | - Patrícia Severino
- Institute of Research and Technology, University Tiradentes, Aracaju, Brazil
| |
Collapse
|
2
|
de Amorim MS, Verdan MH, Oliveira CS, Santos ADC. Essential Oils of Neotropical Myrtaceae Species From 2011 Until 2023: An Update. Chem Biodivers 2025; 22:e202401503. [PMID: 39322619 DOI: 10.1002/cbdv.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
The Myrtaceae family is renowned for its rich diversity of bioactive metabolites with broad applications across various industries. This review comprehensively explores the chemical composition and biological activities of Neotropical species within the Myrtaceae family from 2011 to 2023. A total of 170 papers were analyzed, covering 148 species from 28 genera, with notable emphasis on Eugenia, Eucalyptus, Myrcia, and Psidium. Compounds with relative abundance exceeding 10 % were tabulated to highlight the most significant volatiles for each genus. Our findings were cross-referenced with previous reviews whenever feasible. Antioxidant, antibacterial, and antimicrobial activities emerged as the primary focus, collectively representing 41 % of the studies, predominantly conducted in vitro. Additionally, we discuss less conventional approaches to essential oil studies in Myrtaceae species, underscoring avenues for future exploration. The investigation of essential oils from Myrtaceae holds promise for significant advancements in biotechnology, with potential benefits for the economy, environment, and human health. This review serves as a valuable resource for guiding future research strategies in this field.
Collapse
Affiliation(s)
- Magali S de Amorim
- Universidade da Química, Itaboraí, Rio de janeiro, CEP 24860-001, Brasil
| | - Maria H Verdan
- VerdanRevisa, Dourados, Mato Grosso do Sul, CEP 79820-030, Brasil
| | - Cristhian S Oliveira
- Instituto de Química de São Carlos-IQSC, Universidade de São Paulo-USP, São Carlos, São Paulo, CEP 13563-120, Brasil
| | - Alan D C Santos
- Núcleo de Pesquisa de Produtos Naturais-NPPN, Universidade Federal de Santa Maria-UFSM, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brasil
| |
Collapse
|
3
|
Bassanini I, Tognoli C, Meli M, Parapini S, Basilico N, Fronza G, Serra S, Riva S. "Novel chemo-enzymatic synthesis, structural elucidation and first antiprotozoal activity profiling of the atropoisomeric dimers of trans-8-Hydroxycalamenene". Bioorg Chem 2024; 153:107917. [PMID: 39476600 DOI: 10.1016/j.bioorg.2024.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
Leishmaniasis and malaria are two debilitating protozoan diseases affecting millions globally, particularly in tropical and subtropical regions. Current therapeutic options face significant challenges due to emerging drug-resistant strains, necessitating the discovery of novel antiprotozoal agents. This study explores, for the first time, the antiprotozoal potential of calamenenes and their dimers, naturally occurring sesquiterpenes found in essential oils, through a novel chemo-enzymatic synthesis approach. Using the laccase from Trametes versicolor, atropoisomeric dimers of (-)- and (+)-8-trans-hydroxycalamenene were synthesized from commercially available (-)- and (+)-menthol. Structural elucidation was achieved via 2D-NMR spectroscopy, electronic circular dichroism, and DFT calculations. In vitro profiling against Leishmania spp and drug-resistant Plasmodium falciparum revealed that calamenene dimers exhibited significantly higher antiprotozoal activity compared to their monomeric counterparts, highlighting the potential of dimeric terpenoids as promising antiprotozoal agents. This work lays the foundation for developing novel antimalarial drugs based on calamenene scaffolds, encouraging further interactome studies to optimize their pharmacological properties.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta'' - SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Chiara Tognoli
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta'' - SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Massimiliano Meli
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta'' - SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy.
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy.
| | - Giovanni Fronza
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta''- SCITEC, Consiglio Nazionale delle Ricerche, Via Luigi Mancinelli 7, 20131, Milano, Italy.
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta''- SCITEC, Consiglio Nazionale delle Ricerche, Via Luigi Mancinelli 7, 20131, Milano, Italy.
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta'' - SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| |
Collapse
|
4
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Essid R, Kefi S, Damergi B, Abid G, Fares N, Jallouli S, Abid I, Hussein D, Tabbene O, Limam F. Promising Antileishmanial Activity of Micromeria nervosa Essential Oil: In Vitro and In Silico Studies. Molecules 2024; 29:1876. [PMID: 38675696 PMCID: PMC11055018 DOI: 10.3390/molecules29081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting β-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 μg/mL) and amastigote (IC50 of 8.04 and 7.32 μg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, Tunis 1068, Tunisia
| | - Sarra Kefi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, Tunis 1068, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
- University of Tunis-El Manar, Campus Universitaire Farhat Hached, BP-94 Rommana, Tunis 1068, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agro-Systems, Centre of Biotechnology of Borj Cedria, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| | - Islem Abid
- Center of Excellence in Biotechnology Research, College of Applied Medical Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Dina Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, OH 44115, USA;
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (S.K.); (N.F.)
| |
Collapse
|
6
|
Pereira MTM, Charret TS, Pascoal VDB, Machado RLD, Rocha LM, Pascoal ACRF. Myrciaria Genus: Bioactive Compounds and Biological Activities. Chem Biodivers 2022; 19:e202200864. [PMID: 36250914 DOI: 10.1002/cbdv.202200864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
The Myrtaceae family is of angiosperms, imposing its size and economic, cultural, and scientific importance. The genus Myrciaria, belonging to this family, has 33 species currently accepted, many of which are research targets aimed at elucidating their bioactive compounds and biological activities. Most species of the Myrciaria genus have terpenes in their composition, mainly mono and sesquiterpenes, and phenolic compounds such as tannins, phenolic acids, and flavonoids. Other secondary metabolites are also observed, such as alkaloids, steroids, coumarins, saponins, and naphthoquinones. These bioactive compounds are closely related to these species' most diverse biological activities: antioxidant, anti-inflammatory, analgesic, antiproliferative, antimicrobial, antiparasitic, insecticide, metabolic, protective, and nutraceutical. This work aims to provide a review of secondary metabolites and medicinal properties related to the genus Myrciaria, thus stimulating further studies on the species of this genus.
Collapse
Affiliation(s)
- Mariana Toledo Martins Pereira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Thiago Sardou Charret
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Vinicius D'Avila Bitencourt Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Ricardo Luiz Dantas Machado
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Leandro Machado Rocha
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório de Tecnologia de Produtos Naturais do Departamento de Tecnologia Farmacêutica da Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| |
Collapse
|
7
|
Chemical Composition and Variability of the Volatile Components of Myrciaria Species Growing in the Amazon Region. Molecules 2022; 27:molecules27072234. [PMID: 35408634 PMCID: PMC9000723 DOI: 10.3390/molecules27072234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Myrciaria (Myrtaceae) species have been well investigated due to their chemical and biological relevance. The present work aimed to carry out the chemotaxonomic study of essential oils of the species M. dubia, M. floribunda, and M. tenella, sampled in the Brazilian Amazon and compare them with the volatile compositions from other Myrciaria species reported to Brazil and Colombia. The leaves of six Myrciaria specimens were collected (PA, Brazil) during the dry season, and their chemical compositions were analyzed by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID). The main compounds identified in the essential oils were monoterpenes with pinane and menthane skeletons, followed by sesquiterpenes with caryophyllane and cadinane skeletons. Among the sampled Myrciaria specimens, five chemical profiles were reported for the first time: profile I (M. dubia, α-pinene, 54.0-67.2%); profile II (M. floribunda, terpinolene 23.1%, α-phellandrene 17.7%, and γ-terpinene 8.7%); profile III (M. floribunda, γ-cadinene 17.5%, and an unidentified oxygenated sesquiterpene 15.0%); profile IV (M. tenella, E-caryophyllene 43.2%, and α-humulene 5.3%); and profile V (M. tenella, E-caryophyllene 19.1%, and caryophyllene oxide 41.1%). The Myrciaria chemical profiles showed significant variability in extraction methods, collection sites, plant parts, and genetic aspects.
Collapse
|
8
|
García YM, Ramos ALCC, de Paula ACCFF, do Nascimento MH, Augusti R, de Araújo RLB, de Lemos EEP, Melo JOF. Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules 2021; 26:molecules26175281. [PMID: 34500715 PMCID: PMC8434304 DOI: 10.3390/molecules26175281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Among the many species of native fruit of Brazil that have been little explored, there is Myrciaria floribunda (also known as rumberry, cambuizeiro, or guavaberry), a species with significant variability, which has fruits of different colors (orange, red, and purple) when ripe. The physical-chemical characteristics evaluated were fruit weight (FW), seed weight (SW), pulp weight (PW), number of seeds (NS), longitudinal diameter (LD), transverse diameter (TD), format (LD/TD), hydrogen potential (pH), soluble solids (SS), titratable acidity (TA), and ratio (SS/TA); further, the volatile organic compounds (VOCs) of nine accesses of rumberry orchards were identified. The averages of the variables FW, SW, PW, NS, LD, TD, shape, and firmness were 0.76 g, 0.22 g, 0.54 g, 1.45, 10.06 mm, 9.90 mm, 1.02, 2.96 N, respectively. LD/TD data showed that the fruits have a slightly rounded shape (LD/TD = 1). The averages for pH, SS, TA, and SS/TA were 3.74, 17.58 Brix, 4.31% citric acid, and 4.31, respectively. The evaluated parameters indicated that the fruits can be consumed both in natura and industrialized, with the red-colored fruits presenting a good balance of SS/TA, standards demanded by the processing industries. Thirty-six VOCs were identified, with emphasis on the sesquiterpenes. Caryophyllene (21.6% to 49.3%) and γ-selinene (11.3% to 16.3%) were the most predominant compounds in rumberry fruits.
Collapse
Affiliation(s)
- Yesenia Mendoza García
- Centro de Ciências Agrárias, Campus A. C. Simões, Universidade Federal de Alagoas, Rio Largo 57072-970, Brazil; (Y.M.G.); (E.E.P.d.L.)
| | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.C.C.R.); (R.L.B.d.A.)
| | | | - Maicon Heitor do Nascimento
- Departamento de Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Bambuí 38900-000, Brazil; (A.C.C.F.F.d.P.); (M.H.d.N.)
| | - Rodinei Augusti
- Departamento de Química, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 35702-031, Brazil;
| | - Raquel Linhares Bello de Araújo
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.C.C.R.); (R.L.B.d.A.)
| | - Eurico Eduardo Pinto de Lemos
- Centro de Ciências Agrárias, Campus A. C. Simões, Universidade Federal de Alagoas, Rio Largo 57072-970, Brazil; (Y.M.G.); (E.E.P.d.L.)
| | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João Del-Rei, Sete Lagoas 36307-352, Brazil
- Correspondence:
| |
Collapse
|
9
|
Beltrame BM, Klein-Junior LC, Schwanz M, Henriques AT. Psidium L. genus: A review on its chemical characterization, preclinical and clinical studies. Phytother Res 2021; 35:4795-4803. [PMID: 33826191 DOI: 10.1002/ptr.7112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
The Myrtaceae family is considered one of the largest known botanical families and the genus Psidium is among the most economically interesting. Psidium genus comprises approximately 112 species, and it has been extensively studied, mainly because of Psidium guavaja species. Phytochemical investigations confirmed the presence of phenolics as the main compounds, as well as the essential oils, which were also widely investigated. Pharmacological studies report analgesic, anthelminthic, acaricidal, antihiperglicemic, among other biological activities for different species. The present review covers the relevant literature until 2019 and outlines the current data on chemical composition, preclinical and clinical studies on Psidium species, as well as the main possible mechanisms of action responsible for the described activities. Therefore, it can provide a reference for pharmaceutical research and clinical application of this genus.
Collapse
Affiliation(s)
- Betina M Beltrame
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Melissa Schwanz
- Pharmacognosy Laboratory, Life Sciences Knowledge Area, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Amélia T Henriques
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|