1
|
Cai Z, Yang Z, Wang Y, Li Y, Zhao H, Zhao H, Yang X, Wang C, Meng T, Tong X, Zheng H, He Z, Niu C, Yang J, Chen F, Yang Z, Zou Z, Li W. Tumor treating induced fields: a new treatment option for patients with glioblastoma. Front Neurol 2024; 15:1413236. [PMID: 39484048 PMCID: PMC11524832 DOI: 10.3389/fneur.2024.1413236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Purpose Currently, a range of electromagnetic therapies, including magnetic field therapy, micro-currents therapy, and tumor treating fields, are under investigation for their potential in central nervous system tumor research. Each of these electromagnetic therapies possesses distinct effects and limitations. Our focus is on overcoming these limitations by developing a novel electric field generator. This generator operates by producing alternating induced currents within the tumor area through electromagnetic induction. Methods Finite element analysis was employed to calculate the distribution of electric fields. Cell viability was assessed using the CCK-8 assay. Tumor volumes and weights served as indicators to evaluate the effectiveness of TTIF. The in-vivo imaging system was utilized to confirm tumor growth in the brains of mice. Results TTIF significantly inhibited the proliferation of U87 cells both in vitro and in vivo. Conclusion TTIF significantly inhibited the proliferation of U87 cells both in vitro and in vivo. Consequently, TTIF emerges as a potential treatment option for patients with progressive or metastatic GBM.
Collapse
Affiliation(s)
- Zehao Cai
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zukai Yang
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ye Li
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Hong Zhao
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Hanwen Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Yang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tengteng Meng
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Xiao Tong
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Hao Zheng
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Zhaoyong He
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Chunli Niu
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Junzhi Yang
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Feng Chen
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhi Yang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhige Zou
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenbin Li
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Szklener K, Bilski M, Nieoczym K, Mańdziuk D, Mańdziuk S. Enhancing glioblastoma treatment through the integration of tumor-treating fields. Front Oncol 2023; 13:1274587. [PMID: 37916157 PMCID: PMC10616854 DOI: 10.3389/fonc.2023.1274587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Glioblastoma (GBM) represents a significant therapeutic challenge due to its aggressive nature. Tumor Treating Fields (TTFields) present a promising approach to GBM therapy. The primary mechanism of TTFields, an antimitotic effect, alongside numerous indirect effects including increased cell membrane permeability, signifies their potential in combination with other treatment modalities. Current combinations often include chemotherapy, particularly with temozolomide (TMZ), however, emerging data suggests potential synergy with targeted therapies, radiotherapy, and immunotherapy as well. TTFields display minimal side effects, predominantly skin-related, posing no significant barrier to combined therapies. The effectiveness of TTFields in GBM treatment has been demonstrated through several post-registration studies, advocating for continued research to optimize overall survival (OS) and progression-free survival (PFS) in patients, as opposed to focusing solely on quality of life.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
| | - Karolina Nieoczym
- Student Scientific Association at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Dominika Mańdziuk
- Student Scientific Association at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Sevastre AS, Costachi A, Tataranu LG, Brandusa C, Artene SA, Stovicek O, Alexandru O, Danoiu S, Sfredel V, Dricu A. Glioblastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments (Review). Exp Ther Med 2021; 22:1408. [PMID: 34676001 PMCID: PMC8524703 DOI: 10.3892/etm.2021.10844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Due to its localisation, rapid onset, high relapse rate and resistance to most currently available treatment methods, glioblastoma multiforme (GBM) is considered to be the deadliest type of all gliomas. Although surgical resection, chemotherapy and radiotherapy are among the therapeutic strategies used for the treatment of GBM, the survival rates achieved are not satisfactory, and there is an urgent need for novel effective therapeutic options. In addition to single-target therapy, multi-target therapies are currently under development. Furthermore, drugs are being optimised to improve their ability to cross the blood-brain barrier. In the present review, the main strategies applied for GBM treatment in terms of the most recent therapeutic agents and approaches that are currently under pre-clinical and clinical testing were discussed. In addition, the most recently reported experimental data following the testing of novel therapies, including stem cell therapy, immunotherapy, gene therapy, genomic correction and precision medicine, were reviewed, and their advantages and drawbacks were also summarised.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, ‘Bagdasar-Arseni’ Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Corina Brandusa
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Stefan Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing Targu Jiu, Titu Maiorescu University of Bucharest, 210106 Targu Jiu, Romania
| | - Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
4
|
Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021; 26:molecules26092707. [PMID: 34063013 PMCID: PMC8124757 DOI: 10.3390/molecules26092707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.
Collapse
|