Lundblad LKA, Rinaldi LM, Poynter ME, Riesenfeld EP, Wu M, Aimi S, Barone LM, Bates JHT, Irvin CG. Detrimental effects of albuterol on airway responsiveness requires airway inflammation and is independent of β-receptor affinity in murine models of asthma.
Respir Res 2011;
12:27. [PMID:
21385381 PMCID:
PMC3060863 DOI:
10.1186/1465-9921-12-27]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/07/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND
Inhaled short acting β2-agonists (SABA), e.g. albuterol, are used for quick reversal of bronchoconstriction in asthmatics. While SABA are not recommended for maintenance therapy, it is not uncommon to find patients who frequently use SABA over a long period of time and there is a suspicion that long term exposure to SABA could be detrimental to lung function. To test this hypothesis we studied the effect of long-term inhaled albuterol stereoisomers on immediate allergic response (IAR) and airway hyperresponsiveness (AHR) in mouse models of asthma.
METHODS
Balb/C mice were sensitized and challenged with ovalbumin (OVA) and then we studied the IAR to inhaled allergen and the AHR to inhaled methacholine. The mice were pretreated with nebulizations of either racemic (RS)-albuterol or the single isomers (S)- and (R)-albuterol twice daily over 7 days prior to harvest.
RESULTS
We found that all forms of albuterol produced a significant increase of IAR measured as respiratory elastance. Similarly, we found that AHR was elevated by albuterol. At the same time a mouse strain that is intrinsically hyperresponsive (A/J mouse) was not affected by the albuterol isomers nor was AHR induced by epithelial disruption with Poly-L-lysine affected by albuterol.
CONCLUSIONS
We conclude that long term inhalation treatment with either isomer of albuterol is capable of precipitating IAR and AHR in allergically inflamed airways but not in intrinsically hyperresponsive mice or immunologically naïve mice. Because (S)-albuterol, which lacks affinity for the β2-receptor, did not differ from (R)-albuterol, we speculate that isomer-independent properties of the albuterol molecule, other than β2-agonism, are responsible for the effect on AHR.
Collapse