1
|
Ghalamfarsa F, Khatami SH, Vakili O, Taheri-Anganeh M, Tajbakhsh A, Savardashtaki A, Fazli Y, Uonaki LR, Shabaninejad Z, Movahedpour A, Ghalamfarsa G. Bispecific antibodies in colorectal cancer therapy: recent insights and emerging concepts. Immunotherapy 2021; 13:1355-1367. [PMID: 34641708 DOI: 10.2217/imt-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is identified as a life-threatening malignancy. Despite several efforts and proceedings available for CRC therapy, it is still a health concern. Among a vast array of novel therapeutic procedures, employing bispecific antibodies (BsAbs) is currently considered to be a promising approach for cancer therapy. BsAbs, as a large family of molecules designed to realize two distinct epitopes or antigens, can be beneficial microgadgets to target the tumor-associated antigen pairs. On the other hand, applying the immune system's capabilities to attack malignant cells has been proven as a tremendous development in cancer therapeutic projects. The current study has attempted to overview some of the approved BsAbs in CRC therapy and those under clinical trials. For this purpose, reputable scientific search engines and databases, such as PubMed, ScienceDirect, Google Scholar, Scopus, etc., were explored using the keywords 'bispecific antibodies', 'colorectal cancer', 'immunotherapy' and 'tumor markers'.
Collapse
Affiliation(s)
- Farideh Ghalamfarsa
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Fazli
- Dena Clinical Diagnostic Laboratory, Yasuj, Iran
| | - Leila Rezaei Uonaki
- Department of Biotechnology, School of Science, Shahrekord University, Shahrekord, Iran
| | - Zahra Shabaninejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Department of Microbiology & Immunology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
2
|
Defining eligible patients for allele-selective chemotherapies targeting NAT2 in colorectal cancer. Sci Rep 2020; 10:22436. [PMID: 33384440 PMCID: PMC7775439 DOI: 10.1038/s41598-020-80288-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapies targeting somatic bystander genetic events represent a new avenue for cancer treatment. We recently identified a subset of colorectal cancer (CRC) patients who are heterozygous for a wild-type and a low activity allele (NAT2*6) but lack the wild-type allele in their tumors due to loss of heterozygosity (LOH) at 8p22. These tumors were sensitive to treatment with a cytotoxic substrate of NAT2 (6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine, APA), and pointed to NAT2 loss being a therapeutically exploitable vulnerability of CRC tumors. To better estimate the total number of treatable CRC patients, we here determined whether tumor cells retaining also other NAT2 low activity variants after LOH respond to APA treatment. The prevalent low activity alleles NAT2*5 and NAT2*14, but not NAT2*7, were found to be low metabolizers with high sensitivity to APA. By analysis of two different CRC patient cohorts, we detected heterozygosity for NAT2 alleles targetable by APA, along with allelic imbalances pointing to LOH, in ~ 24% of tumors. Finally, to haplotype the NAT2 locus in tumor and patient-matched normal samples in a clinical setting, we develop and demonstrate a long-read sequencing based assay. In total, > 79.000 CRC patients per year fulfil genetic criteria for high sensitivity to a NAT2 LOH therapy and their eligibility can be assessed by clinical sequencing.
Collapse
|
3
|
Sacdalan DB, Mendoza MJ, Vergara JP, Catedral LI, Ting FI, Leones LM, Berba CM, Sacdalan DL. Beyond bevacizumab: a review of targeted agents in metastatic small bowel adenocarcinoma. Med Oncol 2020; 37:106. [PMID: 33135102 DOI: 10.1007/s12032-020-01432-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Small bowel cancers are rare tumors with an incidence 50-100-fold less than colorectal cancer. These tumors carry a poor prognosis. Owing to its rarity, treatment of this disease, particularly in its advanced stages, has not been optimized and is derived mainly from treatment regimens for colorectal cancer. Based on recent studies bevacizumab, an antibody directed against vascular endothelial growth factor and used in the management of metastatic CRC, has been added to treatment guidelines for metastatic small bowel adenocarcinoma. We investigate in this review the evidence behind other targeted treatments that may be beneficial in the treatment of metastatic small bowel adenocarcinoma. These are agents against EGFR, VEGFR-2, HER2, and NTRK as well as immune checkpoint inhibitors. The last class of drugs appears to hold the greatest promise based on the preponderance of evidence supporting its use. However, overall data remains sparse. Results of studies currently underway will be valuable in shedding more light on the management of this aggressive cancer.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Department of Pharmacology and Toxicology, University of the Philippines Manila College of Medicine, Pedro Gil Street, Manila, 1000, Philippines. .,Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines.
| | - Marvin Jonne Mendoza
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| | - John Paulo Vergara
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| | - Lance Isidore Catedral
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| | - Frederic Ivan Ting
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| | - Louis Mervyn Leones
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| | - Carlo Miguel Berba
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| | - Dennis L Sacdalan
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Taft Avenue, Manila, 1000, Philippines
| |
Collapse
|
4
|
Balibegloo M, Rezaei N. Development and clinical application of bispecific antibody in the treatment of colorectal cancer. Expert Rev Clin Immunol 2020; 16:689-709. [PMID: 32536227 DOI: 10.1080/1744666x.2020.1783249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Treatment of colorectal cancer as one of the most commonly diagnosed and a frequent cause of cancer-related deaths is of great challenges in health-related issues. AREAS COVERED Immunotherapy is the fourth pillar of cancer treatment which provides more novel therapeutic options with expanding investigational potentials. One of the modalities in immunotherapy is the use of bispecific antibodies. Despite demonstrating many promising roles, it still needs more advanced studies to identify the actual pros and cons. In this review, the application of bispecific antibody in the treatment of colorectal cancer has been explained, based on preclinical and clinical studies. The literature search was conducted mainly through PubMed in June and September 2019. EXPERT OPINION Bispecific antibody is in its early stages in colorectal cancer treatment, requiring modern technologies in manufacturing, better biomarkers and more specific target antigens, more studies on individual genetic variations, and conducting later phase clinical trials and systematic reviews to achieve better survival benefits.
Collapse
Affiliation(s)
- Maryam Balibegloo
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN) , Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN) , Tehran, Iran
| |
Collapse
|
5
|
Gu X, Xiao Q, Ruan Q, Shu Y, Dongre A, Iyer R, Humphreys WG, Lai Y. Comparative untargeted proteomic analysis of ADME proteins and tumor antigens for tumor cell lines. Acta Pharm Sin B 2018; 8:252-260. [PMID: 29719786 PMCID: PMC5925393 DOI: 10.1016/j.apsb.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022] Open
Abstract
In the present study, total membrane proteins from tumor cell lines including HepG2, Hep3B2, H226, Ovcar3 and N87 were extracted and digested with γLysC and trypsin. The resulting peptide lysate were pre-fractionated and subjected to untargeted quantitative proteomics analysis using a high resolution mass spectrometer. The mass spectra were processed by the MaxQuant and the protein abundances were estimated using total peak area (TPA) method. A total of 6037 proteins were identified, and the analysis resulted in the identification of 2647 membrane proteins. Of those, tumor antigens and absorption, metabolism, disposition and elimination (ADME) proteins including UDP-glucuronosyltransferase, cytochrome P450, solute carriers and ATP-binding cassette transporters were detected and disclosed significant variations among the cell lines. The principal component analysis was performed for the cluster of cell lines. The results demonstrated that H226 is closely related with N87, while Hep3B2 aligned with HepG2. The protein cluster of Ovcar3 was apart from that of other cell lines investigated. By providing for the first time quantitative untargeted proteomics analysis, the results delineated the expression profiles of membrane proteins. These findings provided a useful resource for selecting targets of choice for anticancer therapy through advancing data obtained from preclinical tumor cell line models to clinical outcomes.
Collapse
|
6
|
Anti-EGFR antibody sensitizes colorectal cancer stem-like cells to Fluorouracil-induced apoptosis by affecting autophagy. Oncotarget 2018; 7:81402-81409. [PMID: 27833077 PMCID: PMC5348401 DOI: 10.18632/oncotarget.13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
Recent reports suggest that colorectal carcinoma (CRC) may be sustained by a small subpopulation of cells, termed cancer stem cells (CSCs), which have drug resistance properties as a key reason for chemotherapy failure. The epidermal growth factor receptor (EGFR) controls CRC initiation and progression. Monoclonal antibody against EGFR (cetuximab) has been used in treatment of several cancers. However, the effects of cetuximab on CSCs in the CRC chemotherapy remain unclear. Here, we studied the effects of cetuximab on the CSC-like cells in Fluorouracil (5-FU)-treated CRC cells. CSC-like cells were independently isolated from CRC cells using CD133, CD44 or EphB2-high as markers and confirmed by tumor sphere formation assay. We found that 5-FU increased the apoptotic death of CSC-like CRC cells. Co-application of cetuximab augmented the apoptotic death of CSC-like CRC cells by 5-FU, seemingly through inhibition of 5-FU-induced increases in cell autophagy in CSC-like CRC cells. Together, our data suggest that EGFR monoclonal antibody may sensitize CSC-like CRC cells to 5-FU-induced apoptosis by affecting autophagy.
Collapse
|
7
|
Bartolomé RA, Aizpurua C, Jaén M, Torres S, Calviño E, Imbaud JI, Casal JI. Monoclonal Antibodies Directed against Cadherin RGD Exhibit Therapeutic Activity against Melanoma and Colorectal Cancer Metastasis. Clin Cancer Res 2017; 24:433-444. [PMID: 28916526 DOI: 10.1158/1078-0432.ccr-17-1444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/02/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
Abstract
Purpose: New targets are required for the control of advanced metastatic disease. We investigated the use of cadherin RGD motifs, which activate the α2β1integrin pathway, as targets for the development of therapeutic monoclonal antibodies (mAb).Experimental Design: Cadherin 17 (CDH17) fragments and peptides were prepared and used for immunization and antibody development. Antibodies were tested for inhibition of β1 integrin and cell adhesion, proliferation, and invasion assays using cell lines from different cancer types (colorectal, pancreatic, melanoma, and breast cancer). Effects of the mAbs on cell signaling were determined by Western blot analysis. Nude mice were used for survival analysis after treatment with RGD-specific mAbs and metastasis development.Results: Antibodies against full-length CDH17 failed to block the binding to α2β1 integrin. However, CDH17 RGD peptides generated highly selective RGD mAbs that blocked CDH17 and vascular-endothelial (VE)-cadherin-mediated β1 integrin activation in melanoma and breast, pancreatic, and colorectal cancer cells. Antibodies provoked a significant reduction in cell adhesion and proliferation of metastatic cancer cells. Treatment with mAbs impaired the integrin signaling pathway activation of FAK in colorectal cancer, of JNK and ERK kinases in colorectal and pancreatic cancers, and of JNK, ERK, Src, and AKT in melanoma and breast cancer. In vivo, RGD-specific mAbs increased mouse survival after inoculation of melanoma and colorectal cancer cell lines to cause lung and liver metastasis, respectively.Conclusions: Blocking the interaction between RGD cadherins and α2β1 integrin with highly selective mAbs constitutes a promising therapy against advanced metastatic disease in colon cancer, melanoma, and, potentially, other cancers. Clin Cancer Res; 24(2); 433-44. ©2017 AACRSee related commentary by Marshall, p. 253.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Marta Jaén
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Sofía Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - J Ignacio Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
8
|
Banerjee A, Pathak S, Subramanium VD, G D, Murugesan R, Verma RS. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov Today 2017; 22:1224-1232. [PMID: 28545838 DOI: 10.1016/j.drudis.2017.05.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/07/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022]
Abstract
Despite advances in treatment modalities, colon cancer (CC) is the third most common cause of cancer-related death worldwide. Subsequent unfavorable effects owing to toxicity of conventional drugs are a challenging problem associated with chemotherapy. There is noticeable concern toward site-specific/targeted delivery of chemotherapeutic drugs specifically to the affected site of the colon in a predictable and reproducible manner. However, the biggest challenge in successful drug targeting for the colon is avoidance of drug absorption and/or degradation in the upper gastrointestinal tract before the drug reaches the colon. Nanoparticles endowed with targeting abilities offer a novel approach for site-specific delivery of chemotherapeutic agents. The present review focuses on recent approaches for colon-specific drug delivery (CDDS) and aims to unveil the emerging possibilities and advances in the treatment of CC with CDDS.
Collapse
Affiliation(s)
- Antara Banerjee
- Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, TN, India
| | - Surajit Pathak
- Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, TN, India
| | | | - Dharanivasan G
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, TN, India
| | - Ramachandran Murugesan
- Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, TN, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, TN, India.
| |
Collapse
|
9
|
Malm M, Frejd FY, Ståhl S, Löfblom J. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs 2016; 8:1195-1209. [PMID: 27532938 PMCID: PMC5058629 DOI: 10.1080/19420862.2016.1212147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) has in recent years been recognized as a key node in the complex signaling network of many different cancers. It is implicated in de novo and acquired resistance against therapies targeting other growth factor receptors, e.g., EGFR, HER2, and it is a major activator of the PI3K/Akt signaling pathway. Consequently, HER3 has attracted substantial attention, and is today a key target for drugs in clinical development. Sophisticated protein engineering approaches have enabled the generation of a range of different affinity proteins targeting this receptor, including antibodies and alternative scaffolds that are either mono- or bispecific. Here, we describe HER3 and its role as a key tumor target, and give a comprehensive review of HER3-targeted proteins currently in development, including discussions on the opportunities and challenges of targeting this receptor.
Collapse
Affiliation(s)
- Magdalena Malm
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - Fredrik Y Frejd
- b Affibody AB, SE, Stockholm , Sweden.,c Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - John Löfblom
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| |
Collapse
|
10
|
Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen en Henegouwen PM. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release 2013; 172:607-17. [DOI: 10.1016/j.jconrel.2013.08.298] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
11
|
Abstract
Antibody-based therapeutics against cancer are highly successful and currently enjoy unprecedented recognition of their potential; 13 monoclonal antibodies (mAbs) have been approved for clinical use in the European Union and in the United States. Bevacizumab, rituximab, and trastuzumab had sales in 2010 of more than $5 billion each. Hundreds of mAbs, including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small-molecule drugs, and mAbs with optimized pharmacokinetics, are in clinical trials. However, deeper understanding of mechanisms is needed to overcome major problems including resistance to therapy, access to targets, complexity of biological systems, and individual variations.
Collapse
Affiliation(s)
- Mark J Adler
- UC San Diego Cancer Center, Department of Medicine, University of California Health Systems, 1200 Garden View, Encinitas, CA 92024, USA.
| | | |
Collapse
|
12
|
Cancer Immunotherapy by Retargeting of Immune Effector Cells via Recombinant Bispecific Antibody Constructs. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
13
|
Abstract
Protein-based therapeutics are highly successful in clinic and currently enjoy unprecedented recognition of their potential. More than 100 genuine and similar number of modified therapeutic proteins are approved for clinical use in the European Union and the USA with 2010 sales of US$108 bln; monoclonal antibodies (mAbs) accounted for almost half (48%) of the sales. Based on their pharmacological activity, they can be divided into five groups: (a) replacing a protein that is deficient or abnormal; (b) augmenting an existing pathway; (c) providing a novel function or activity; (d) interfering with a molecule or organism; and (e) delivering other compounds or proteins, such as a radionuclide, cytotoxic drug, or effector proteins. Therapeutic proteins can also be grouped based on their molecular types that include antibody-based drugs, Fc fusion proteins, anticoagulants, blood factors, bone morphogenetic proteins, engineered protein scaffolds, enzymes, growth factors, hormones, interferons, interleukins, and thrombolytics. They can also be classified based on their molecular mechanism of activity as (a) binding non-covalently to target, e.g., mAbs; (b) affecting covalent bonds, e.g., enzymes; and (c) exerting activity without specific interactions, e.g., serum albumin. Most protein therapeutics currently on the market are recombinant and hundreds of them are in clinical trials for therapy of cancers, immune disorders, infections, and other diseases. New engineered proteins, including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs, and proteins with optimized pharmacokinetics, are currently under development. However, in the last several decades, there are no conceptually new methodological developments comparable, e.g., to genetic engineering leading to the development of recombinant therapeutic proteins. It appears that a paradigm change in methodologies and understanding of mechanisms is needed to overcome major challenges, including resistance to therapy, access to targets, complexity of biological systems, and individual variations.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
14
|
Roovers RC, Vosjan MJWD, Laeremans T, el Khoulati R, de Bruin RCG, Ferguson KM, Verkleij AJ, van Dongen GAMS, van Bergen en Henegouwen PMP. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int J Cancer 2011; 129:2013-24. [PMID: 21520037 DOI: 10.1002/ijc.26145] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/11/2011] [Indexed: 01/19/2023]
Abstract
The epidermal growth factor receptor (EGFR) has been shown to be a valid cancer target for antibody-based therapy. At present, several anti-EGFR monoclonal antibodies have been successfully used, such as cetuximab and matuzumab. X-ray crystallography data show that these antibodies bind to different epitopes on the ecto-domain of EGFR, providing a rationale for the combined use of these two antibody specificities. We have previously reported on the successful isolation of antagonistic anti-EGFR nanobodies. In our study, we aimed to improve the efficacy of these molecules by combining nanobodies with specificities similar to both cetuximab and matuzumab into a single biparatopic molecule. Carefully designed phage nanobody selections resulted in two sets of nanobodies that specifically blocked the binding of either matuzumab or cetuximab to EGFR and that did not compete for each others' binding. A combination of nanobodies from both epitope groups into the biparatopic nanobody CONAN-1 was shown to block EGFR activation more efficiently than monovalent or bivalent (monospecific) nanobodies. In addition, this biparatopic nanobody potently inhibited EGF-dependent cell proliferation. Importantly, in an in vivo model of athymic mice bearing A431 xenografts, CONAN-1 inhibited tumour outgrowth with an almost similar potency as the whole mAb cetuximab, despite the fact that CONAN-1 is devoid of an Fc portion that could mediate immune effector functions. Compared to therapy using bivalent, monospecific nanobodies, CONAN-1 was clearly more potent in tumour growth inhibition. These results show that the rational design of biparatopic nanobody-based anticancer therapeutics may yield potent lead molecules for further development.
Collapse
Affiliation(s)
- Rob C Roovers
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C, Lin S, Tang HY, Brown D, Van Scoy B, Kulawy R, Queimado L, Drusano GL, Louie A, Davis FB, Mousa SA, Davis PJ. Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol 2011; 7:e1001073. [PMID: 21304935 PMCID: PMC3033367 DOI: 10.1371/journal.pcbi.1001073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/29/2010] [Indexed: 11/19/2022] Open
Abstract
Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations. Clinical treatment protocols for specific solid cancers have favorable response rates of 20%–25%. Cancer cells frequently become resistant to treatment. Therefore, novel anti-cancer drugs and combination regimens need to be developed. Conducting enough clinical trials to evaluate combinations of anti-cancer agents in several regimens to optimize treatment is not feasible. We showed that tetrac inhibits the growth of various cancer cell lines. Our newly developed in vitro system allowed studying the effects of tetrac over time in various human cancer cell lines. Our mathematical model could distinguish two effects of tetrac and may be used to predict effects of other than the studied dosage regimens. Human breast cancer cells were more sensitive to the effect on success of replication than the effect on growth rate, whereas the maximum possible effect was larger for the latter effect. Nanoparticulate tetrac, which does not enter into cells, had a larger effect than unmodified tetrac. The combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab showed approximately additive effects. Our in vitro perfusion system together with mathematical modeling may be useful for dose-finding, translation from in vitro to animal and human studies, and studying effects of other chemotherapeutic agents or their combinations.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Cornelia B. Landersdorfer
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
- * E-mail:
| | - David London
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Ran Meng
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Chang-Uk Lim
- Flow Cytometry Core Facility, Ordway Research Institute, Albany, New York, United States of America
| | - Cassie Lin
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Sharon Lin
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Heng-Yuan Tang
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - David Brown
- Emerging Infections and Pharmacodynamics Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Brian Van Scoy
- Emerging Infections and Pharmacodynamics Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Robert Kulawy
- Emerging Infections and Pharmacodynamics Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Lurdes Queimado
- Department of Otorhinolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - George L. Drusano
- Emerging Infections and Pharmacodynamics Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Arnold Louie
- Emerging Infections and Pharmacodynamics Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Faith B. Davis
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, United States of America
| | - Paul J. Davis
- Signal Transduction Laboratory, Ordway Research Institute, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
16
|
Kanwar SS, Nautiyal J, Majumdar AP. EGFR(S) inhibitors in the treatment of gastro-intestinal cancers: what's new? Curr Drug Targets 2010; 11:682-98. [PMID: 20298154 PMCID: PMC3915939 DOI: 10.2174/138945010791170851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/18/2009] [Indexed: 01/01/2023]
Abstract
In the past 10 to 15 years, a considerable progress has been made in the treatment of gastrointestinal (GI) related malignancies, as number of agents expanded from only one in 1995 to seven in 2006. Current review describes the recent role of targeted therapies, specifically EGFR inhibitors in the treatment of GI cancers. Importance of dietary agents in the treatment and prevention of GI cancers is also reviewed.
Collapse
Affiliation(s)
- Shailender Singh Kanwar
- Veterans Affairs Medical Center, Wayne State University, Detroit, Ml 48201, USA
- Department of Internal Medicine, Wayne State University, Detroit, Ml 48201, USA
| | - Jyoti Nautiyal
- Veterans Affairs Medical Center, Wayne State University, Detroit, Ml 48201, USA
- Department of Internal Medicine, Wayne State University, Detroit, Ml 48201, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, Ml 48201, USA
| | - Adhip P.N. Majumdar
- Veterans Affairs Medical Center, Wayne State University, Detroit, Ml 48201, USA
- Department of Internal Medicine, Wayne State University, Detroit, Ml 48201, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, Ml 48201, USA
| |
Collapse
|
17
|
Yang H, Jager MJ, Grossniklaus HE. Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest Ophthalmol Vis Sci 2010; 51:2835-42. [PMID: 20089875 PMCID: PMC2874122 DOI: 10.1167/iovs.09-4755] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/16/2009] [Accepted: 01/10/2010] [Indexed: 02/06/2023] Open
Abstract
PURPOSE This study was undertaken to determine whether anti-vascular endothelial growth factor (VEGF) therapy inhibits growth of primary uveal melanoma and spread of its hepatic micrometastases. METHODS The human uveal melanoma cell lines Mel290 and Mel 270, HUVECs, mouse B16LS9 melanoma cells, and mouse vascular endothelial cells were separately cultured or co-cultured and incubated with bevacizumab or IgG1. The level of VEGF protein in the culture medium was measured by ELISA. In vitro angiogenesis and invasion assays were performed under bevacizumab or IgG1 treatment. Mel290 or B16LS9 cells were inoculated into NU/NU or C57Bl/6 mouse eyes which were enucleated after 7 days. The sizes of the intraocular tumors were determined. Time and dosage experiments were performed by using 50 or 250 microg bevacizumab starting at day 1 or 4 after inoculation. Hepatic micrometastases were enumerated. Proliferation, apoptosis, and angiogenesis markers were detected in the ocular tumor by immunofluorescence staining. RESULTS Bevacizumab significantly reduced the level of VEGF in the culture media from human uveal melanoma cells, mouse melanoma cells, and co-cultured cells. It also inhibited cell tube formation and decreased in vitro invasion of tumor cells. In the mouse model, bevacizumab suppressed primary ocular melanoma growth and the formation of hepatic micrometastases in a dose-dependent manner. Furthermore, immunohistochemical staining showed decreased Ki67 and unchanged caspase 3 expression after treatment with bevacizumab. CONCLUSIONS Treatment with bevacizumab suppressed in vitro growth and in vivo hepatic micrometastasis of ocular melanoma cells. Bevacizumab is a potential therapeutic agent for the treatment of uveal melanoma micrometastases.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Apoptosis
- Bevacizumab
- Caspase 3/metabolism
- Cell Proliferation
- Coculture Techniques
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Ki-67 Antigen/metabolism
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Liver Neoplasms/secondary
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Tumor Cells, Cultured
- Uveal Neoplasms/blood supply
- Uveal Neoplasms/drug therapy
- Uveal Neoplasms/pathology
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Hua Yang
- From the Departments of Ophthalmology and
| | - Martine J. Jager
- the Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans E. Grossniklaus
- From the Departments of Ophthalmology and
- Pathology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
18
|
Abstract
The potential for antibodies to act as "magic bullets" for treatment of human disease was recognized a century ago, but its full realization has began to occur only during the last decade. A key to their current success is the ability to make libraries of antibodies/B cells, isolate a single species, and engineer it to be safe, efficacious and of high quality. Despite this progress, major challenges to the effective prevention, diagnosis and treatment of a vast majority of diseases remain. Limited success in the development of effective vaccines against diseases such as AIDS and cancer reflects our incomplete understanding of how antibodies are generated and function. Only a miniscule number of antibodies are characterized out of the universe of antibodies generated by the immune system. Knowledge of antibodyomes-the complete sets of antibodies-could help solve these and other challenges.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
19
|
Quintela-Fandino M, Le Tourneau C, Duran I, Chen EX, Wang L, Tsao M, Bandarchi-Chamkhaleh B, Pham NA, Do T, MacLean M, Nayyar R, Tusche MW, Metser U, Wright JJ, Mak TW, Siu LL. Phase I combination of sorafenib and erlotinib therapy in solid tumors: safety, pharmacokinetic, and pharmacodynamic evaluation from an expansion cohort. Mol Cancer Ther 2010; 9:751-60. [PMID: 20197396 DOI: 10.1158/1535-7163.mct-09-0868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aims of this study were to further define the safety of sorafenib and erlotinib, given at their full approved monotherapy doses, and to correlate pharmacokinetic and pharmacodynamic markers with clinical outcome. In addition, a novel pharmacodynamic marker based on the real-time measurement of RAF signal transduction capacity (STC) is described. Sorafenib was administered alone for a 1-week run-in period, and then both drugs were given together continuously. RAF STC was assessed in peripheral blood monocytes prior to erlotinib initiation. Epidermal growth factor receptor (EGFR) expression and K-RAS mutations were measured in archival tumor samples. Changes in pERK and CD31 were determined in fresh tumor biopsies obtained pretreatment, prior to erlotinib dosing, and during the administration of both drugs. In addition, positron emission tomography-computed tomography scans and pharmacokinetic assessments were done. Eleven patients received a total of 57 cycles (median, 5; range, 1-10). Only four patients received full doses of both drugs for the entire study course, with elevation of liver enzymes being the main reason for dose reductions and delays. Among 10 patients evaluable for response, 8 experienced tumor stabilization of >or=4 cycles. Pharmacokinetic analysis revealed no significant interaction of erlotinib with sorafenib. Sorafenib-induced decrease in RAF-STC showed statistically significant correlation with time-to-progression in seven patients. Other pharmacodynamic markers did not correlate with clinical outcome. This drug combination resulted in promising clinical activity in solid tumor patients although significant toxicity warrants close monitoring. RAF-STC deserves further study as a predictive marker for sorafenib.
Collapse
|
20
|
Bouché O, Beretta GD, Alfonso PG, Geissler M. The role of anti-epidermal growth factor receptor monoclonal antibody monotherapy in the treatment of metastatic colorectal cancer. Cancer Treat Rev 2010; 36 Suppl 1:S1-10. [DOI: 10.1016/s0305-7372(10)00036-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
The KRAS Mutation is Highly Correlated With EGFR Alterations in Patients With Non-small Cell Lung Cancer. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1877-8607(10)60002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Kelly RJ, Billemont B, Rixe O. Renal toxicity of targeted therapies. Target Oncol 2009; 4:121-33. [DOI: 10.1007/s11523-009-0109-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/31/2009] [Indexed: 02/21/2023]
|
23
|
Cancer Detection and Treatment: The Role of Nanomedicines. Mol Biotechnol 2009; 42:358-66. [DOI: 10.1007/s12033-009-9161-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/24/2009] [Indexed: 11/25/2022]
|
24
|
Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12:55-64. [PMID: 19278896 DOI: 10.1016/j.drup.2009.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Cancers in the gastrointestinal system account for a large proportion of malignancies and cancer-related deaths with gastric cancer and colorectal cancer being the most common ones. For those patients in whom surgical resection is not possible, other therapeutic approaches are necessary. Disordered apoptosis has been linked to cancer development and treatment resistance. Apoptosis occurs via extrinsic or intrinsic signaling each triggered and regulated by many different molecular pathways. In recent years, the selective induction of apoptosis in tumor cells has been increasingly recognized as a promising approach for cancer therapy. A detailed understanding of the molecular pathways involved in the regulation of apoptosis is essential for developing novel effective therapeutic approaches. Apoptosis can be induced by many different approaches including activating cell surface death receptors (for example, Fas, TRAIL and TNF receptors), inhibiting cell survival signaling (such as EGFR, MAPK and PI3K), altering apoptosis threshold by modulating pro-apoptotic and anti-apoptotic members of the Bcl-2 family, down-regulating anti-apoptosis proteins (such as XIAP, survivin and c-IAP2), and using other pro-apoptotic agents. In this review, the authors reviewed the currently reported apoptosis-targeting approaches in gastrointestinal cancers.
Collapse
|