1
|
Awaness A, Elkeeb R, Afshari S, Atef E. The Pharmacokinetic Changes in Cystic Fibrosis Patients Population: Narrative Review. MEDICINES (BASEL, SWITZERLAND) 2024; 12:1. [PMID: 39846711 PMCID: PMC11755472 DOI: 10.3390/medicines12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Cystic fibrosis (CF) is a rare genetic disorder commonly affecting multiple organs such as the lungs, pancreas, liver, kidney, and intestine. Our search focuses on the pathophysiological changes that affect the drugs' absorption, distribution, metabolism, and excretion (ADME). This review aims to identify the ADME data that compares the pharmacokinetics (PK) of different drugs in CF and healthy subjects. The published data highlight multiple factors that affect absorption, such as the bile salt precipitation and the gastrointestinal pH. Changes in CF patients' protein binding and body composition affected the drug distribution. The paper also discusses the factors affecting metabolism and renal elimination, such as drug-protein binding and metabolizing enzyme capacity. The majority of CF patients are on multidrug therapy, which increases the risk of drug-drug interactions (DDI). This is particularly true for those receiving the newly developed transmembrane conductance regulator (CFTR), as they are at a higher risk for CYP-related DDI. Our research highlights the importance of meticulously evaluating PK variations and DDIs in drug development and the therapeutic management of CF patients.
Collapse
Affiliation(s)
| | | | | | - Eman Atef
- Pharmacy School, West Coast University, Los Angeles, CA 90004, USA; (A.A.); (R.E.); (S.A.)
| |
Collapse
|
2
|
De Sutter PJ, Gasthuys E, Van Braeckel E, Schelstraete P, Van Biervliet S, Van Bocxlaer J, Vermeulen A. Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019. Clin Pharmacokinet 2020; 59:1551-1573. [PMID: 32808233 DOI: 10.1007/s40262-020-00932-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cystic fibrosis is a lethal inherited disease that affects multiple organs. To provide optimal pharmacological treatment of comorbidities associated with cystic fibrosis, relevant alterations in pharmacokinetics must be known. OBJECTIVE The objective of this study was to compare the pharmacokinetics of drugs between patients with cystic fibrosis and controls, based on clinical study reports published from 1999 to 2019. METHODS Clinical studies were considered if patients with cystic fibrosis and patients without cystic fibrosis/healthy volunteers were included, a drug was administered orally/intravenously and pharmacokinetic parameters were compared. RESULTS In total, 32 clinical studies were included. Twenty-one studies reported absorption parameters. For multiple drugs, speed and/or extent of oral absorption were lower in cystic fibrosis. This phenomenon is possibly related to pathophysiological changes in the gastrointestinal tract associated with cystic fibrosis. However, a large proportion of drugs had comparable absorption kinetics. Twenty-one studies discussed volume of distribution, which was comparable between groups for most drugs. Initial differences became smaller when scaled to body composition. For some highly protein-bound drugs, inflammation-related changes in plasma proteins helped explain residual variability between cystic fibrosis and controls. Twenty-four studies elaborated on clearance, whereby higher clearances were observed in cystic fibrosis. In contrast with previously published reviews, no evidence was found for increased activities of drug-metabolising enzymes nor for up-regulation of active transport processes involved in drug disposition. In most cases, scaling clearance parameters to body composition and/or incorporating differences in plasma protein concentration accounted for these larger clearances. IMPLICATIONS There is no evidence that genetic defects causing cystic fibrosis directly lead to altered pharmacokinetics. However, co-morbidities can have a potential impact on drug absorption and disposition. Because of gastrointestinal complications, it is not advisable to extrapolate drug absorption parameters from healthy volunteers to patients with cystic fibrosis. Differences observed in the volume of distribution and clearance in patients with cystic fibrosis can potentially be explained by correcting for lean body mass.
Collapse
Affiliation(s)
- Pieter-Jan De Sutter
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Elke Gasthuys
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Department of Internal Medicine: Pneumology, Ghent University Hospital, Ghent, Belgium
| | - Petra Schelstraete
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Department of Paediatric Pneumology, Ghent University Hospital, Ghent, Belgium
| | - Stephanie Van Biervliet
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Zhang Y, Holenarsipur VK, Kandoussi H, Zeng J, Mariappan TT, Sinz M, Shen H. Detection of Weak Organic Anion-Transporting Polypeptide 1B Inhibition by Probenecid with Plasma-Based Coproporphyrin in Humans. Drug Metab Dispos 2020; 48:841-848. [PMID: 32723847 DOI: 10.1124/dmd.120.000076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/13/2020] [Indexed: 02/13/2025] Open
Abstract
Probenecid (PROB) is a clinical probe inhibitor of renal organic anion transporter (OAT) 1 and OAT3 that inhibits in vitro activity of hepatic drug transporters OATP1B1 and OATP1B3. It was hypothesized that PROB could potentially affect the disposition of OATP1B drug substrates. The plasma levels of the OATP1B endogenous biomarker candidates, including coproporphyrin I (CPI), CPIII, hexadecanedioate (HDA), and tetradecanedioate (TDA), were examined in 14 healthy subjects treated with PROB. After oral administration with 1000 mg PROB alone and in combination with furosemide (FSM), AUC (0-24 h) values were 1.39 ± 0.21-fold and 1.57 ± 0.41-fold higher than predose levels for CPI and 1.34 ± 0.16-fold and 1.45 ± 0.57-fold higher for CPIII. Despite increased systemic exposures, no decreases in CPI and CPIII renal clearance were observed (0.97 ± 0.38-fold and 1.16 ± 0.51-fold for CPI, and 1.34 ± 0.53-fold and 1.50 ± 0.69-fold for CPIII, respectively). These results suggest that the increase of CP systemic exposure is caused by OATP1B inhibition. Consistent with this hypothesis, PROB inhibited OATP1B1- and OATP1B3-mediated transport of CPI in a concentration-dependent manner, with IC50 values of 167 ± 42.0 and 76.0 ± 17.2 µM, respectively, in transporter-overexpressing human embryonic kidney cell assay. The inhibition potential was further confirmed by CPI and CPIII hepatocyte uptake experiments. In contrast, administration of PROB alone did not change AUC (0-24 h) of HDA and TDA relative to prestudy levels, although the administration of PROB in combination with FSM increased HDA and TDA levels compared with FSM alone (1.02 ± 0.18-fold and 0.90 ± 0.20-fold vs. 1.71 ± 0.43-fold and 1.62 ± 0.40-fold). Taken together, these findings indicate that PROB displays weak OATP1B inhibitory effects in vivo and that coproporphyrin is a sensitive endogenous probe of OATP1B inhibition. This study provides an explanation for the heretofore unknown mechanism responsible for PROB's interaction with other xenobiotics. SIGNIFICANCE STATEMENT: This study suggested that PROB is a weak clinical inhibitor of OATP1B based on the totality of evidence from the clinical interaction between PROB and CP and the in vitro inhibitory effect of PROB on OATP1B-mediated CP uptake. It demonstrates a new methodology of utilizing endogenous biomarkers to evaluate complex drug-drug interaction, providing explanation for the heretofore unknown mechanism responsible for PROB's inhibition. It provides evidence to strengthen the claim that CP is a sensitive circulating endogenous biomarker of OATP1B inhibition.
Collapse
Affiliation(s)
- Yueping Zhang
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Vinay K Holenarsipur
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Hamza Kandoussi
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Jianing Zeng
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - T Thanga Mariappan
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Michael Sinz
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Hong Shen
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| |
Collapse
|
4
|
Evaluation of Renal Anionic Secretion Following Living-donor and Deceased-donor Renal Transplantation: A Clinical Pharmacokinetic Study of Cefoxitin Microdosing. Transplant Direct 2020; 6:e561. [PMID: 33062845 PMCID: PMC7531749 DOI: 10.1097/txd.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
Renal transplantation is the treatment of choice for patients with end-stage renal disease. Because kidneys are the primary excretory organs for various drugs/drug metabolites, changes in renal graft function would significantly alter the clearance and exposure of renally secreted drugs. Renal allografts from living and deceased donors normally undergo numerous insults, including injuries associated with prolonged cold ischemic time, reperfusion, and nephrotoxicity due to calcineurin inhibitors. These physiologic and pharmacologic stresses can alter the expression and functional capacity of renal organic anionic transporters (OATs). Methods The objectives of this study were to assess the longitudinal changes in renal anionic secretion in kidney transplant patients, to study the effect of prolonged cold ischemic time on OAT secretion in kidney transplant patients (living- versus deceased-donor recipients), and to compare OAT secretory capacity of renal transplant recipients with healthy volunteers. Cefoxitin was used as a probe drug to assess OAT secretion. Cefoxitin pharmacokinetics was studied in 15 de novo renal transplant recipients following intravenous administration of 200 mg cefoxitin within 14 d and beyond 90 d posttransplantation. Results No longitudinal changes in real OAT secretion in early posttransplant period were observed, and there were no differences in renal OAT secretion between living- and deceased-donor renal transplant recipients. Overall, cefoxitin exposure was 2.6-fold higher and half-life increased by 2.2-fold in renal transplant recipients when compared with historical healthy controls. Conclusions These results suggest that OAT system is functioning well, but renal transplant recipients would need significantly lower dosage of drugs that are primarily secreted via the OAT system compared with normal subjects.
Collapse
|
5
|
Everts RJ, Begg R, Gardiner SJ, Zhang M, Turnidge J, Chambers ST, Begg EJ. Probenecid and food effects on flucloxacillin pharmacokinetics and pharmacodynamics in healthy volunteers. J Infect 2019; 80:42-53. [PMID: 31521742 DOI: 10.1016/j.jinf.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/07/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To measure the effect of probenecid, fasting and fed, on flucloxacillin pharmacokinetic and pharmacodynamic endpoints. METHODS Flucloxacillin 1000 mg orally was given to 11 volunteers alone while fasting ('flucloxacillin alone'), and with probenecid 500 mg orally while fasting ('probenecid fasting') and with food ('probenecid fed'). Flucloxacillin pharmacokinetic and pharmacodynamic endpoints were compared. RESULTS Probenecid, fasting and fed, increased free plasma flucloxacillin area under the concentration-time curve (zero to infinity) ∼1.65-fold (p < 0.01) versus flucloxacillin alone. Probenecid fed prolonged time to peak flucloxacillin concentrations ∼2-fold versus the other two regimens (p < 0.01). Probenecid fasting or fed increased free flucloxacillin concentrations exceeding 30%, 50% and 70% of the first 6, 8 and 12 h post-dose by 1.58- to 5.48-fold compared with flucloxacillin alone. As an example of this pharmacodynamic improvement, the probability of target attainment of free concentrations above the minimum inhibitory concentration for Staphylococcus aureus (0.5 mg/L) for 50% of a 6-hour dose interval was > 80% for flucloxacillin plus probenecid (fasting or fed) and < 20% for flucloxacillin alone. CONCLUSIONS Probenecid increased flucloxacillin exposure, with predicted pharmacodynamic effects greater than pharmacokinetic effects because of the altered shape of the concentration-time curve. Probenecid may improve the applicability of oral flucloxacillin regimens.
Collapse
Affiliation(s)
| | - Ronald Begg
- Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Sharon J Gardiner
- Department of Infectious Diseases, Christchurch Hospital, Christchurch, New Zealand; Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand; Pharmacy Services, Christchurch Hospital, Christchurch, New Zealand
| | - Mei Zhang
- Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand; Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - John Turnidge
- Departments of Pathology, Paediatrics, and Molecular and Biomedical Sciences, University of Adelaide, Australia
| | - Stephen T Chambers
- Department of Infectious Diseases, Christchurch Hospital, Christchurch, New Zealand; Department of Pathology, University of Otago-Christchurch, Christchurch, New Zealand
| | - Evan J Begg
- Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand; Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
6
|
Shah NR, Bulitta JB, Kinzig M, Landersdorfer CB, Jiao Y, Sutaria DS, Tao X, Höhl R, Holzgrabe U, Kees F, Stephan U, Sörgel F. Novel Population Pharmacokinetic Approach to Explain the Differences between Cystic Fibrosis Patients and Healthy Volunteers via Protein Binding. Pharmaceutics 2019; 11:pharmaceutics11060286. [PMID: 31216743 PMCID: PMC6630667 DOI: 10.3390/pharmaceutics11060286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound β-lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for β-lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 ± 5.4kg) and six healthy volunteers (LBM: 53.1 ± 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50% in male and estimated as 54.5% in female healthy volunteers as well as 56.3% in male and 74.4% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding.
Collapse
Affiliation(s)
- Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (N.R.S.); (Y.J.); (D.S.S.); (X.T.)
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (N.R.S.); (Y.J.); (D.S.S.); (X.T.)
- Correspondence: (J.B.B.); (F.S.); Tel.: +1-407-313-7010 (J.B.B.); +49-911-518-290 (F.S.)
| | - Martina Kinzig
- IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg 90562, Germany;
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (N.R.S.); (Y.J.); (D.S.S.); (X.T.)
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (N.R.S.); (Y.J.); (D.S.S.); (X.T.)
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (N.R.S.); (Y.J.); (D.S.S.); (X.T.)
| | - Rainer Höhl
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nürnberg 90419, Germany;
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany;
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg 93053, Germany;
| | - Ulrich Stephan
- IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg 90562, Germany;
- Department of Pharmacology, University of Duisburg, Essen 47057, Germany
| | - Fritz Sörgel
- IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg 90562, Germany;
- Department of Pharmacology, University of Duisburg, Essen 47057, Germany
- Correspondence: (J.B.B.); (F.S.); Tel.: +1-407-313-7010 (J.B.B.); +49-911-518-290 (F.S.)
| |
Collapse
|
7
|
Shen H, Holenarsipur VK, Mariappan TT, Drexler DM, Cantone JL, Rajanna P, Singh Gautam S, Zhang Y, Gan J, Shipkova PA, Marathe P, Humphreys WG. Evidence for the Validity of Pyridoxic Acid (PDA) as a Plasma-Based Endogenous Probe for OAT1 and OAT3 Function in Healthy Subjects. J Pharmacol Exp Ther 2019; 368:136-145. [PMID: 30361237 DOI: 10.1124/jpet.118.252643] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of organic anion transporter (OAT) 1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single-dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 hour after receiving PROB (40 and 1000 mg orally) on days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased the area under the plasma concentration-time curve (AUC) of PDA by 3.1-fold (dosed alone; P < 0.05), and 3.2-fold (coadministered with FSM; P < 0.01), compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (P > 0.05) and 2.1-fold (P < 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC, whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 vs. 3.3, respectively). PDA and HVA renal clearance (CL R) values were decreased by PROB to smaller extents compared with FSM (0.35-0.37 and 0.67-0.73 vs. 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and that its plasma exposure responds in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CL R values between subjects is more favorable relative to HVA.
Collapse
Affiliation(s)
- Hong Shen
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Vinay K Holenarsipur
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - T Thanga Mariappan
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Dieter M Drexler
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Joseph L Cantone
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Prabhakar Rajanna
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Shashyendra Singh Gautam
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Yueping Zhang
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Jinping Gan
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Petia A Shipkova
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - Punit Marathe
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| | - W Griffith Humphreys
- Metabolism and Pharmacokinetics Department (H.S., Y.Z., J.G., P.M., W.G.H.) and Bioanalytical and Discovery Analytical Sciences Department (P.A.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bangalore, India (V.K.H., T.T.M., P.R., S.S.G.); and Bioanalytical and Discovery Analytical Sciences Department, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., J.L.C.)
| |
Collapse
|
8
|
|
9
|
Umeyama Y, Fujioka Y, Okuda T. Clarification of P-glycoprotein inhibition-related drug–drug interaction risks based on a literature search of the clinical information. Xenobiotica 2014; 44:1135-44. [DOI: 10.3109/00498254.2014.928958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Zobell JT, Ferdinand C, Young DC. Continuous infusion meropenem and ticarcillin-clavulanate in pediatric cystic fibrosis patients. Pediatr Pulmonol 2014; 49:302-6. [PMID: 23775821 DOI: 10.1002/ppul.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 04/14/2013] [Indexed: 11/08/2022]
Abstract
Aztreonam, cefepime, and ceftazidime are anti-pseudomonal beta-lactam antibiotics which have been previously reported to be administered by continuous infusion (CI) in pediatric CF patients. We present two cases administering intravenous (IV) meropenem and ticarcillin-clavulanate by CI in pediatric CF patients. The delivery of beta-lactam antibiotics via CI should be considered in order to optimize the pharmacodynamics (PD) of beta-lactams in the treatment of acute pulmonary exacerbations (APE).
Collapse
Affiliation(s)
- Jeffery T Zobell
- Department or Pharmacy, Intermountain Primary Children's Medical Center, Salt Lake City, Utah; Intermountain Cystic Fibrosis Pediatric Center, Salt Lake City, Utah
| | | | | |
Collapse
|
11
|
Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2011; 27:85-105. [PMID: 22123128 DOI: 10.2133/dmpk.dmpk-11-rv-098] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent pharmacogenomic/pharmacogenetic (PGx) studies have disclosed important roles for drug transporters in the human body. Changes in the functions of drug transporters due to drug/food interactions or genetic polymorphisms, for example, are associated with large changes in pharmacokinetic (PK) profiles of substrate drugs, leading to changes in drug response and side effects. This information is extremely useful not only for drug development but also for individualized treatment. Among drug transporters, the ATP-binding cassette (ABC) transporters are expressed in most tissues in humans, and play protective roles; reducing drug absorption from the gastrointestinal tract, enhancing drug elimination into bile and urine, and impeding the entry of drugs into the central nervous system and placenta. In addition to PK/pharmacodynamic (PD) issues, ABC transporters are reported as etiologic and prognostic factors (or biomarkers) for genetic disorders. Although a consensus has not yet been reached, clinical studies have demonstrated that the PGx of ABC transporters influences the overall outcome of pharmacotherapy and contributes to the pathogenesis and progression of certain disorders. This review explains the impact of PGx in ABC transporters in terms of PK/PD, focusing on P-glycoprotein and breast cancer resistance protein (BCRP).
Collapse
Affiliation(s)
- Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
12
|
Bibliography. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:328-37. [PMID: 19564733 DOI: 10.1097/med.0b013e32832eb365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Yin OQ, Tomlinson B, Chow MS. Effect of multidrug resistance gene-1 (ABCB1) polymorphisms on the single-dose pharmacokinetics of cloxacillin in healthy adult Chinese men. Clin Ther 2009; 31:999-1006. [DOI: 10.1016/j.clinthera.2009.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 01/11/2023]
|
14
|
Beringer PM, Hidayat L, Heed A, Zheng L, Owens H, Benitez D, Rao AP. GFR estimates using cystatin C are superior to serum creatinine in adult patients with cystic fibrosis. J Cyst Fibros 2009; 8:19-25. [DOI: 10.1016/j.jcf.2008.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/03/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|