1
|
Vivo A, Fitzpatrick MA, Suda KJ, Wilson GM, Jones MM, Evans ME, Evans CT. Treatment effectiveness of antibiotic therapy in Veterans with multidrug-resistant Acinetobacter spp. bacteremia. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e230. [PMID: 38156232 PMCID: PMC10753468 DOI: 10.1017/ash.2023.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
Objective To describe antimicrobial therapy used for multidrug-resistant (MDR) Acinetobacter spp. bacteremia in Veterans and impacts on mortality. Methods This was a retrospective cohort study of hospitalized Veterans Affairs patients from 2012 to 2018 with a positive MDR Acinetobacter spp. blood culture who received antimicrobial treatment 2 days prior to through 5 days after the culture date. Only the first culture per patient was used. The association between treatment and patient characteristics was assessed using bivariate analyses. Multivariable logistic regression models examined the relationship between antibiotic regimen and in-hospital, 30-day, and 1-year mortality. Generalized linear models were used to assess cost outcomes. Results MDR Acinetobacter spp. was identified in 184 patients. Most cultures identified were Acinetobacter baumannii (90%), 3% were Acinetobacter lwoffii, and 7% were other Acinetobacter species. Penicillins-β-lactamase inhibitor combinations (51.1%) and carbapenems (51.6%)-were the most prescribed antibiotics. In unadjusted analysis, extended spectrum cephalosporins and penicillins-β-lactamase inhibitor combinations-were associated with a decreased odds of 30-day mortality but were insignificant after adjustment (adjusted odds ratio (aOR) = 0.47, 95% CI, 0.21-1.05, aOR = 0.75, 95% CI, 0.37-1.53). There was no association between combination therapy vs monotherapy and 30-day mortality (aOR = 1.55, 95% CI, 0.72-3.32). Conclusion In hospitalized Veterans with MDR Acinetobacter spp., none of the treatments were shown to be associated with in-hospital, 30-day, and 1-year mortality. Combination therapy was not associated with decreased mortality for MDR Acinetobacter spp. bacteremia.
Collapse
Affiliation(s)
- Amanda Vivo
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Medical Center, Hines, IL, USA
| | - Margaret A. Fitzpatrick
- Center of Innovation for Veteran Centered and Value Drive Care, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katie J. Suda
- Center for Health Equity Research and Promotion, VA Pittsburgh Health Care System, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geneva M. Wilson
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Medical Center, Hines, IL, USA
- Department of Preventive Medicine, Center for Health Services and Outcomes Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Makoto M. Jones
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Martin E. Evans
- VHA MRSA/MDRO Program Office, the National Infectious Diseases Service, Patient Care Services, VA Central Office and the Lexington VA Medical Center, Lexington, KY, USA
- Department of Internal Medicine, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Charlesnika T. Evans
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Medical Center, Hines, IL, USA
- Department of Preventive Medicine, Center for Health Services and Outcomes Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Guan S, Zhong L, Yu H, Wang L, Jin Y, Liu J, Xiang H, Yu H, Wang L, Wang D. Molecular docking and proteomics reveals the synergistic antibacterial mechanism of theaflavin with β-lactam antibiotics against MRSA. Front Microbiol 2022; 13:993430. [PMID: 36452924 PMCID: PMC9702817 DOI: 10.3389/fmicb.2022.993430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2022] [Indexed: 04/09/2024] Open
Abstract
Recurrent epidemics of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) have illustrated that the effectiveness of antibiotics in clinical application is rapidly fading. A feasible approach is to combine natural products with existing antibiotics to achieve an antibacterial effect. In this molecular docking study, we found that theaflavin (TF) preferentially binds the allosteric site of penicillin-binding protein 2a (PBP2a), inducing the PBP2a active site to open, which is convenient for β-lactam antibiotics to treat MRSA infection, instead of directly exerting antibacterial activity at the active site. Subsequent TMT-labeled proteomics analysis showed that TF treatment did not significantly change the landscape of the S. aureus USA300 proteome. Checkerboard dilution tests and kill curve assays were performed to validate the synergistic effect of TF and ceftiofur, and the fractional inhibitory concentration index (FICI) was 0.1875. The antibacterial effect of TF combined with ceftiofur was better than that of single-drug treatment in vitro. In addition, TF effectively enhanced the activity of ceftiofur in a mouse model of MRSA-induced pneumonia. Our findings provide a potential therapeutic strategy to combine existing antibiotics with natural products to resolve the prevalent infections of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Ling Zhong
- College of Animal Science, Jilin University, Changchun, China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Jingyu Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Wang
- State Key Laboratory for Zoonotic Diseases, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
3
|
Chung CH, Chandrasekaran S. A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions. PNAS NEXUS 2022; 1:pgac132. [PMID: 36016709 PMCID: PMC9396445 DOI: 10.1093/pnasnexus/pgac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational approaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, changes in the growth environment, drug treatment order, and time interval. To address these limitations, we present a comprehensive approach that uses genome-scale metabolic modeling and machine learning to guide combination therapy design. Our mechanistic approach (a) accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c) accurately predicts drug interactions in various growth conditions and their robustness to pathogen metabolic heterogeneity. Our approach achieved high accuracy (area under the receiver operating curve (AUROC) = 0.83 for synergy, AUROC = 0.98 for antagonism) in predicting drug interactions for Escherichia coli cultured in 57 metabolic conditions based on experimental validation. The entropy in bacterial metabolic response was predictive of combination therapy outcomes across time scales and growth conditions. Simulation of metabolic heterogeneity using population FBA identified two subpopulations of E. coli cells defined by the levels of three proteins (eno, fadB, and fabD) in glycolysis and lipid metabolism that influence cell tolerance to a broad range of antibiotic combinations. Analysis of the vast landscape of condition-specific drug interactions revealed a set of 24 robustly synergistic drug combinations with potential for clinical use.
Collapse
Affiliation(s)
- Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
5
|
Martins FS, Zhu P, Heinrichs MT, Sy SKB. Physiologically based pharmacokinetic-pharmacodynamic evaluation of meropenem plus fosfomycin in paediatrics. Br J Clin Pharmacol 2020; 87:1012-1023. [PMID: 32638408 DOI: 10.1111/bcp.14456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS The objective of the current study was to evaluate paediatric dosing regimens for meropenem plus fosfomycin that generate sufficient coverage against multidrug-resistant bacteria. METHODS The physiologically based pharmacokinetic (PBPK) models of meropenem and fosfomycin were developed from previously published pharmacokinetic studies in five populations: healthy subjects of Japanese origin, and healthy adults, geriatric, paediatric and renally impaired of primarily Caucasian origins. Pharmacodynamic (PD) analyses were carried out by evaluating dosing regimens that achieved a ≥90% joint probability of target attainment (PTA), which was defined as the minimum of the marginal probabilities to achieve the target PD index of each antibiotic. For meropenem, the percentage of time over a 24-hour period wherein the free drug concentration was above the minimum inhibitory concentration (fT > MIC) of at least 40% was its PD target. The fosfomycin PD index was described by fAUC/MIC of at least 40.8. RESULTS For coadministration consisting of 20 mg/kg meropenem q8h as a 3-hour infusion and 35 mg/kg fosfomycin q8h also as a 3-hour infusion in a virtual paediatric population between 1 month and 12 years of age with normal renal function and a corresponding body weight between 3 and 50 kg, a joint PTA ≥ 90% is achieved at MICs of 16 and 64 mg/L for meropenem and fosfomycin coadministration, respectively, against Klebsiella pneumoniae and Pseudomonas aeruginosa. CONCLUSION The current study identified potentially effective paediatric dosing regimens for meropenem plus fosfomycin coadministration against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Frederico S Martins
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Peijuan Zhu
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development LLC, Raritan, NJ, USA
| | - M Tobias Heinrichs
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Paraná, Brazil
| |
Collapse
|
6
|
Almarzoky Abuhussain SS, Sutherland CA, Nicolau DP. Single β-lactams versus combinations as empiric therapy for infections with Pseudomonas aeruginosa: assessing the in vitro susceptibility. Infect Dis (Lond) 2019; 52:33-38. [PMID: 31595829 DOI: 10.1080/23744235.2019.1673900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Background: While the value of combination versus monotherapy of infections with Pseudomonas aeruginosa infection is a subject of debate, increasing antimicrobial resistance of this pathogen makes it difficult to select appropriate empiric regimens. We evaluated the probability that P. aeruginosa would be susceptible to β-lactams either as monotherapy or as part of a combination regimen.Methods: Contemporary non-duplicate isolates of P. aeruginosa derived from blood or the respiratory tract of patients hospitalized in the United States were investigated. Minimum inhibitory concentrations were determined using broth microdilution methods for amikacin (AMK), cefepime (FEP), ceftazidime (CAZ), ceftolozane/tazobactam (C/T), ciprofloxacin (CIP), fosfomycin (FOF), meropenem (MEM), piperacillin/tazobactam (TZP) and tobramycin (TOB). Susceptibility to a regimen was derived from the minimum inhibitory concentrations value of the beta-lactam plus the minimum inhibitory concentrations value of the additional agent.Results: In 1209 P. aeruginosa, susceptibility to C/T exceeded 90%, while susceptibility to FEP, CAZ, MEM and TZP ranged from 73 to 78%. For antibiotic combinations, the addition of the 2nd agent AMK, TOB, CIP or FOF raised the susceptibility to FEP, CAZ, MEM and TZP, whereas very little added activity was noted for C/T due to the intrinsic potency of this compound alone.Conclusions: While the addition of AMK, TOB, CIP or FOF markedly increased the probability that an active regimen would be selected for empirical therapy with FEP, CAZ, MEM and TZP, C/T alone had higher activity than the combinations.
Collapse
Affiliation(s)
- Safa S Almarzoky Abuhussain
- Center for anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Department of Clinical Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Christina A Sutherland
- Center for anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
7
|
Soman R, Veeraraghavan B, Hegde A, Jiandani P, Mehta Y, Nagavekar V, Rodrigues C, Singh RK, Swaminathan S, Todi S, Varma S, Patil S, Barkate H. Indian consensus on the management of CRE infection in critically ill patients (ICONIC) - India. Expert Rev Anti Infect Ther 2019; 17:647-660. [PMID: 31375039 DOI: 10.1080/14787210.2019.1647103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: The increasing burden of carbapenem-resistant Enterobacteriaceae (CRE) carriage and infection in different patient settings in India has created an acute need for guidance for clinicians regarding optimal strategies for the management of CRE infection in critically ill patients. Research design and methods: A multidisciplinary panel of 11 Indian experts in CRE infection assembled for comprehensive discussion and consensus development. The experts developed clinical statements through a systematic review of key literature. Main outcome measures: The panel voted anonymously on 60 clinically relevant questions, through a modified Delphi process. Results: Forty-six key clinical consensus statements (CCS) were proposed. The panel reached a consensus on several important issues, providing recommendations on surveillance, diagnosis, prevention, pharmacokinetic challenges, combination therapy, and cornerstone molecules in CRE infections. The panel also proposed a treatment algorithm for NDM-prevalent settings. Conclusion: These consensus statements may offer clinicians expert guidance on the management of CRE infections. There is a dearth of high-/moderate-level evidence on managing CRE infections; the recommendations presented herein are based on expert opinion.
Collapse
Affiliation(s)
- Rajeev Soman
- a Infectious Diseases, Jupiter Hospital , Pune , India
| | - Balaji Veeraraghavan
- b Department of Clinical Microbiology, Christian Medical College , Vellore , India
| | - Ashit Hegde
- c Critical Care, Hinduja Hospital , Mumbai , India
| | | | - Yatin Mehta
- e Institute of Critical Care and Anesthesiology, Medanta, The Medicity , Gurugram , India
| | | | | | - R K Singh
- h Department of Emergency Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | | | - Subhash Todi
- j Critical Care, Critical Care AMRI Hospitals , Kolkata , India
| | - Subhash Varma
- k Internal Medicine/Hematology, Fortis Hospital , Mohali , India
| | - Saiprasad Patil
- l Medical Services, IF, Glenmark Pharmaceuticals Ltd ., Mumbai , India
| | - Hanmant Barkate
- m Medical Services, IF & MEA, Glenmark Pharmaceuticals Ltd ., Mumbai , India
| |
Collapse
|
8
|
Almarzoky Abuhussain SS, Sutherland CA, Nicolau DP. In vitro potency of antipseudomonal β-lactams against blood and respiratory isolates of P. aeruginosa collected from US hospitals. J Thorac Dis 2019; 11:1896-1902. [PMID: 31285882 DOI: 10.21037/jtd.2019.05.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Challenges due to multidrug resistant (MDR) Gram-negative bacterial pathogens such as P. aeruginosa (PSA) are increasing globally. Suboptimal antimicrobial therapy of infections caused by PSA is associated with increased morbidity and mortality. As a result, antimicrobial susceptibility (%S) studies are pivotal to identifying trends in antimicrobial resistance that inform decisions regarding choice of antimicrobial therapy. This study assessed the in vitro potency of 7 antipseudomonal agents including ceftolozane/tazobactam (C/T) against PSA collected from numerous sites across the US. Methods Multiple US hospitals provided non-duplicate respiratory and blood isolates of PSA for potency testing. MICs against PSA were determined using broth microdilution methods according to CLSI for 7 antimicrobials with antipseudomonal activity: aztreonam (ATM), cefepime (FEP), ceftazidime (CAZ), C/T, imipenem (IPM), meropenem (MEM) and piperacillin/tazobactam (TZP). %S was defined per CLSI or FDA breakpoint criteria. Results Thirty-five hospitals geographically spread across the US provided a total of 1,209 PSA isolates. Of the antibiotics assessed, %S to C/T was the highest at 95% with an MIC50 of 0.5 mg/L and MIC90 of 2 mg/L. In comparison, other %S (MIC50/MIC90) was as follows: ATM 66% (8/32); FEP 76% (4/32); CAZ 78% (4/64); IPM 68% (2/16); MEM 74% (0.5/16); and TZP 73% (8/128). Conclusions For this geographically diverse PSA population, C/T demonstrated the highest overall susceptibility (95%). Other antipseudomonal agents inclusive of the carbapenems displayed susceptibilities of 66-78%. In the era of escalating PSA resistance to the β-lactams, the potency of C/T may represent an important clinical option.
Collapse
Affiliation(s)
- Safa S Almarzoky Abuhussain
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Christina A Sutherland
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
9
|
A Combination Antibiogram Evaluation for Pseudomonas aeruginosa in Respiratory and Blood Sources from Intensive Care Unit (ICU) and Non-ICU Settings in U.S. Hospitals. Antimicrob Agents Chemother 2019; 63:AAC.02564-18. [PMID: 30917987 PMCID: PMC6496158 DOI: 10.1128/aac.02564-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen associated with significant morbidity and mortality. U.S. guidelines for the treatment of hospital-acquired and ventilator-associated pneumonia recommend the use of two antipseudomonal drugs for high-risk patients to ensure that ≥95% of patients receive active empirical therapy. We evaluated the utility of combination antibiograms in identifying optimal anti-P. aeruginosa drug regimens. We conducted a retrospective cross-sectional analysis of the antimicrobial susceptibility of all nonduplicate P. aeruginosa blood and respiratory isolates collected between 1 October 2016 and 30 September 2017 from 304 U.S. hospitals in the BD Insights Research Database. Combination antibiograms were used to determine in vitro rates of susceptibility to potential anti-P. aeruginosa combination regimens consisting of a backbone antibiotic (an extended-spectrum cephalosporin, carbapenem, or piperacillin-tazobactam) plus an aminoglycoside or fluoroquinolone. Single-agent susceptibility rates for the 11,701 nonduplicate P. aeruginosa isolates ranged from 72.7% for fluoroquinolones to 85.0% for piperacillin-tazobactam. Susceptibility rates were higher for blood isolates than for respiratory isolates (P < 0.05). Antibiotic combinations resulted in increased susceptibility rates but did not achieve the goal of 95% antibiotic coverage. Adding an aminoglycoside resulted in higher susceptibility rates than adding a fluoroquinolone; piperacillin-tazobactam plus an aminoglycoside resulted in the highest susceptibility rate (93.3%). Intensive care unit (ICU) isolates generally had lower susceptibility rates than non-ICU isolates. Commonly used antipseudomonal drugs, either alone or in combination, did not achieve 95% coverage against U.S. hospital P. aeruginosa isolates, suggesting that new drugs are needed to attain this goal. Local institutional use of combination antibiograms has the potential to optimize empirical therapy of infections caused by difficult-to-treat pathogens.
Collapse
|
10
|
In Vitro Comparison of Ceftolozane-Tazobactam to Traditional Beta-Lactams and Ceftolozane-Tazobactam as an Alternative to Combination Antimicrobial Therapy for Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.01350-17. [PMID: 28923865 DOI: 10.1128/aac.01350-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/04/2017] [Indexed: 12/29/2022] Open
Abstract
Guidelines for the treatment of sepsis, febrile neutropenia, and hospital-acquired pneumonia caused by Pseudomonas aeruginosa include empirical regimens incorporating two antibiotics from different classes with activity against P. aeruginosa for select at-risk patients to increase the likelihood that the organism will be susceptible to at least one agent. The activity against P. aeruginosa and the rates of cross-resistance of ceftolozane-tazobactam were compared to those of the β-lactam comparators cefepime, ceftazidime, piperacillin-tazobactam, and meropenem alone and cumulatively with ciprofloxacin or tobramycin. Nonurine P. aeruginosa isolates were collected from adult inpatients at 44 geographically diverse U.S. hospitals. MICs were determined using reference broth microdilution methods. Of the 1,257 isolates collected, 29% were from patients in intensive care units and 39% were from respiratory sites. The overall rate of susceptibility to ceftolozane-tazobactam was high at 97%, whereas it was 72 to 76% for cefepime, ceftazidime, piperacillin-tazobactam, and meropenem. The rate of nonsusceptibility to all four comparator β-lactams was 11%; of the isolates nonsusceptible to the four comparator β-lactams, 80% remained susceptible to ceftolozane-tazobactam. Among the isolates nonsusceptible to the tested β-lactam comparators, less than half were susceptible to ciprofloxacin. By comparison, approximately 80% of the β-lactam-nonsusceptible isolates were susceptible to tobramycin, for overall cumulative susceptibility rates of 94 to 95%, nearly 10% higher than that of the ciprofloxacin-β-lactam combinations and approaching that of ceftolozane-tazobactam as a single agent. The rates of susceptibility to ceftolozane-tazobactam were consistently high, with little observable cross-resistance. Ceftolozane-tazobactam monotherapy performed at or above the level of commonly utilized combination therapies on the basis of in vitro susceptibilities. Ceftolozane-tazobactam should be considered for use in patients at high risk for resistant P. aeruginosa infection and as an alternative to empirical combination therapy, especially for patients unable to tolerate aminoglycosides.
Collapse
|
11
|
Identification of 1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol, a Novel Antibacterial Compound Active against Persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017. [PMID: 28630188 DOI: 10.1128/aac.00836-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotics typically fail to completely eradicate a bacterial population, leaving a small fraction of transiently antibiotic-tolerant persister cells intact. Persisters are therefore seen to be a major cause of treatment failure and greatly contribute to the recalcitrant nature of chronic infections. The current study focused on Pseudomonas aeruginosa, a Gram-negative pathogen belonging to the notorious ESKAPE group of pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and, due to increasing resistance against most conventional antibiotics, posing a serious threat to human health. Greatly contributing to the difficult treatment of P. aeruginosa infections is the presence of persister cells, and elimination of these cells would therefore significantly improve patient outcomes. In this study, a small-molecule library was screened for compounds that, in combination with the fluoroquinolone antibiotic ofloxacin, reduced the number of P. aeruginosa persisters compared to the number achieved with treatment with the antibiotic alone. Based on the early structure-activity relationship, 1-((2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol (SPI009) was selected for further characterization. Combination of SPI009 with mechanistically distinct classes of antibiotics reduced the number of persisters up to 106-fold in both lab strains and clinical isolates of P. aeruginosa Further characterization of the compound revealed a direct and efficient killing of persister cells. SPI009 caused no erythrocyte damage and demonstrated minor cytotoxicity. In conclusion, we identified a novel antipersister compound active against P. aeruginosa with promising applications for the design of novel, case-specific combination therapies in the fight against chronic infections.
Collapse
|
12
|
de With K, Allerberger F, Amann S, Apfalter P, Brodt HR, Eckmanns T, Fellhauer M, Geiss HK, Janata O, Krause R, Lemmen S, Meyer E, Mittermayer H, Porsche U, Presterl E, Reuter S, Sinha B, Strauß R, Wechsler-Fördös A, Wenisch C, Kern WV. Strategies to enhance rational use of antibiotics in hospital: a guideline by the German Society for Infectious Diseases. Infection 2017; 44:395-439. [PMID: 27066980 PMCID: PMC4889644 DOI: 10.1007/s15010-016-0885-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction In the time of increasing resistance and paucity of new drug development there is a growing need for strategies to enhance rational use of antibiotics in German and Austrian hospitals. An evidence-based guideline on recommendations for implementation of antibiotic stewardship (ABS) programmes was developed by the German Society for Infectious Diseases in association with the following societies, associations and institutions: German Society of Hospital Pharmacists, German Society for Hygiene and Microbiology, Paul Ehrlich Society for Chemotherapy, The Austrian Association of Hospital Pharmacists, Austrian Society for Infectious Diseases and Tropical Medicine, Austrian Society for Antimicrobial Chemotherapy, Robert Koch Institute. Materials and methods A structured literature research was performed in the databases EMBASE, BIOSIS, MEDLINE and The Cochrane Library from January 2006 to November 2010 with an update to April 2012 (MEDLINE and The Cochrane Library). The grading of recommendations in relation to their evidence is according to the AWMF Guidance Manual and Rules for Guideline Development. Conclusion The guideline provides the grounds for rational use of antibiotics in hospital to counteract antimicrobial resistance and to improve the quality of care of patients with infections by maximising clinical outcomes while minimising toxicity. Requirements for a successful implementation of ABS programmes as well as core and supplemental ABS strategies are outlined. The German version of the guideline was published by the German Association of the Scientific Medical Societies (AWMF) in December 2013.
Collapse
Affiliation(s)
- K de With
- Division of Infectious Diseases, University Hospital Carl Gustav Carus at the TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - F Allerberger
- Division Public Health, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - S Amann
- Hospital Pharmacy, Munich Municipal Hospital, Munich, Germany
| | - P Apfalter
- Institute for Hygiene, Microbiology and Tropical Medicine (IHMT), National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Elisabethinen Hospital Linz, Linz, Austria
| | - H-R Brodt
- Department of Infectious Disease Medical Clinic II, Goethe-University Frankfurt, Frankfurt, Germany
| | - T Eckmanns
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - M Fellhauer
- Hospital Pharmacy, Schwarzwald-Baar Hospital, Villingen-Schwenningen, Germany
| | - H K Geiss
- Department of Hospital Epidemiology and Infectiology, Sana Kliniken AG, Ismaning, Germany
| | - O Janata
- Department for Hygiene and Infection Control, Danube Hospital, Vienna, Austria
| | - R Krause
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| | - S Lemmen
- Division of Infection Control and Infectious Diseases, University Hospital RWTH Aachen, Aachen, Germany
| | - E Meyer
- Institute of Hygiene and Environmental Medicine, Charité, University Medicine Berlin, Berlin, Germany
| | - H Mittermayer
- Institute for Hygiene, Microbiology and Tropical Medicine (IHMT), National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Elisabethinen Hospital Linz, Linz, Austria
| | - U Porsche
- Department for Clinical Pharmacy and Drug Information, Landesapotheke, Landeskliniken Salzburg (SALK), Salzburg, Austria
| | - E Presterl
- Department of Infection Control and Hospital Epidemiology, Medical University of Vienna, Vienna, Austria
| | - S Reuter
- Clinic for General Internal Medicine, Infectious Diseases, Pneumology and Osteology, Klinikum Leverkusen, Leverkusen, Germany
| | - B Sinha
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Strauß
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Hospital Erlangen, Erlangen, Germany
| | - A Wechsler-Fördös
- Department of Antibiotics and Infection Control, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - C Wenisch
- Medical Department of Infection and Tropical Medicine, Kaiser Franz Josef Hospital, Vienna, Austria
| | - W V Kern
- Division of Infectious Diseases, Department of Medicine, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
13
|
Pseudomonas aeruginosa Antimicrobial Susceptibility Results from Four Years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States. Antimicrob Agents Chemother 2017; 61:AAC.02252-16. [PMID: 28069652 DOI: 10.1128/aac.02252-16] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa represents a major cause of health care-associated infections, and inappropriate initial antimicrobial therapy is associated with increased morbidity and mortality. The International Network for Optimal Resistance Monitoring (INFORM) program monitors the in vitro activity of ceftazidime-avibactam and many comparator agents. We evaluated the antimicrobial susceptibility of 7,452 P. aeruginosa isolates collected from 79 U.S. medical centers in 2012 to 2015. The isolates were collected and tested consecutively for susceptibility by broth microdilution method. Infection types included mainly pneumonia (50.5%), skin and skin structure (24.0%), urinary tract (7.8%), and bloodstream (7.7%) infections. The only compounds with >90% susceptibility rates were colistin (MIC50/90, 1/2 mg/liter, respectively; 99.4% susceptible), ceftazidime-avibactam (MIC50/90, 2/4 mg/liter, respectively; 97.0% susceptible), and amikacin (MIC50/90, 2/8 mg/liter, respectively; 97.0/93.0% susceptible [CLSI/EUCAST, respectively]). The addition of avibactam to ceftazidime increased the percentage of susceptible P. aeruginosa isolates from 84.3% to 97.0%. Multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes were observed among 1,151 (15.4%) and 698 (9.4%) isolates, respectively, and ceftazidime-avibactam inhibited 82.1 and 75.8% of these isolates at ≤8 mg/liter, respectively. High rates of cross-resistance were observed with ceftazidime, meropenem, and piperacillin-tazobactam, whereas ceftazidime-avibactam retained activity against isolates nonsusceptible to ceftazidime (81.0% susceptible), meropenem (86.2% susceptible), and piperacillin-tazobactam (85.4% susceptible), as well as isolates nonsusceptible to these three β-lactams (71.2% susceptible). The only antimicrobial combinations that provided a better overall anti-Pseudomonas coverage than ceftazidime-avibactam (97.0% susceptibility rate) were those including amikacin (97.0 to 98.4% coverage). Susceptibility rates remained stable during the study period. The results of this investigation highlight the challenge of optimizing empirical antimicrobial therapy for P. aeruginosa infections.
Collapse
|
14
|
Abstract
Prescribing antibiotics is an essential component of initial therapy in sepsis. Early antibiotics are an important component of therapy, but speed of administration should not overshadow the patient-specific characteristics that determine the optimal breadth of antimicrobial therapy. Cultures should be drawn before antibiotic therapy if it does not significantly delay administration. Combination antibiotic therapy against gram-negative infections is not routinely required, and combination therapy involving vancomycin and piperacillin/tazobactam is associated with an increase in acute kidney injury. Emergency practitioners should be aware of special considerations in the administration and dosing of antibiotics in order to deliver optimal care to septic patients.
Collapse
Affiliation(s)
- Michael G Allison
- Critical Care Medicine, St. Agnes Hospital, 900 South Caton Avenue, Baltimore, MD 21229, USA
| | - Emily L Heil
- Department of Pharmacy, University of Maryland Medical Center, 29 South Greene Street, Room 400, Baltimore, MD 21201, USA
| | - Bryan D Hayes
- Department of Emergency Medicine, University of Maryland Medical Center, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
MacVane SH. Antimicrobial Resistance in the Intensive Care Unit. J Intensive Care Med 2016; 32:25-37. [DOI: 10.1177/0885066615619895] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/30/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
Bacterial infections are a frequent cause of hospitalization, and nosocomial infections are an increasingly common condition, particularly within the acute/critical care setting. Infection control practices and new antimicrobial development have primarily focused on gram-positive bacteria; however, in recent years, the incidence of infections caused by gram-negative bacteria has risen considerably in intensive care units. Infections caused by multidrug-resistant (MDR) gram-negative organisms are associated with high morbidity and mortality, with significant direct and indirect costs resulting from prolonged hospitalizations due to antibiotic treatment failures. Of particular concern is the increasing prevalence of antimicrobial resistance to β-lactam antibiotics (including carbapenems) among Pseudomonas aeruginosa and Acinetobacter baumannii and, recently, among pathogens of the Enterobacteriaceae family. Treatment options for infections caused by these pathogens are limited. Antimicrobial stewardship programs focus on optimizing the appropriate use of currently available antimicrobial agents with the goals of improving outcomes for patients with infections caused by MDR gram-negative organisms, slowing the progression of antimicrobial resistance, and reducing hospital costs. Newly approved treatment options are available, such as β-lactam/β-lactamase inhibitor combinations, which significantly extend the armamentarium against MDR gram-negative bacteria.
Collapse
Affiliation(s)
- Shawn H. MacVane
- Department of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Ereshefsky BJ, Al-Hasan MN, Gokun Y, Martin CA. Comparison of ß-lactam plus aminoglycoside versus ß-lactam plus fluoroquinolone empirical therapy in serious nosocomial infections due to Gram-negative bacilli. J Chemother 2016; 29:30-37. [PMID: 27376664 DOI: 10.1080/1120009x.2016.1154684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We sought to compare clinical cure on day 7 and a 28-day all-cause mortality in patients who received an anti-pseudomonal ß-lactam with a fluoroquinolone or an aminoglycoside for treatment of nosocomial bacteremia or pneumonia due to Gram-negative bacilli while in the ICU. This retrospective cohort study was conducted in critically ill patients at an academic medical centre from January 2005 to August 2011. A total of 129 patients (83 receiving aminoglycoside and 46 receiving fluoroquinolone combinations) were included. Seven-day clinical cure rates were 74% and 72% for fluoroquinolone and aminoglycoside groups, respectively (p = 0.84). There was no significant difference in the odds of clinical cure with a fluoroquinolone as compared to an aminoglycoside combination (adjusted odds ratio 2.4, 95% confidence interval [CI] 0.7-9.0). There was no significant difference in 28-day mortality in patients who received a fluoroquinolone or an aminoglycoside combination (22% vs. 18%, adjusted hazard ratio 0.82, 95% CI 0.29-2.28).
Collapse
Affiliation(s)
| | - Majdi N Al-Hasan
- b Division of Infectious Diseases, UK HealthCare , Lexington , KY , USA
| | - Yevgeniya Gokun
- c Department of Pharmacy Practice and Science , University of Kentucky College of Pharmacy , Lexington , KY , USA
| | - Craig A Martin
- a Department of Pharmacy Services , UK HealthCare , Lexington , KY , USA.,c Department of Pharmacy Practice and Science , University of Kentucky College of Pharmacy , Lexington , KY , USA
| |
Collapse
|
17
|
Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrob Agents Chemother 2016; 60:3509-18. [PMID: 27021319 DOI: 10.1128/aac.03069-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-type Pseudomonas aeruginosa identified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent genes htpX and yccA was reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS undermining mexXY expression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance in P. aeruginosa, RIF might be a useful adjuvant in the AG treatment of P. aeruginosa infections.
Collapse
|
18
|
Novel Microdilution Method to Assess Double and Triple Antibiotic Combination Therapy In Vitro. Int J Microbiol 2016; 2016:4612021. [PMID: 27195009 PMCID: PMC4852351 DOI: 10.1155/2016/4612021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
An in vitro microdilution method was developed to assess double and triple combinations of antibiotics. Five antibiotics including ciprofloxacin, amikacin, ceftazidime, piperacillin, and imipenem were tested against 10 clinical isolates of Pseudomonas aeruginosa. Each isolate was tested against ten double and nine triple combinations of the antibiotics. A 96-well plate was used to test three antibiotics, each one alone and in double and triple combinations against each isolate. The minimum bacteriostatic and bactericidal concentrations in combination were determined with respect to the most potent antibiotic. An Interaction Code (IC) was generated for each combination, where a numerical value was designated based on the 2-fold increase or decrease in the MICs with respect to the most potent antibiotic. The results of the combinations were verified by time-kill assay at constant concentrations of the antibiotics and in a chemostat. Only 13% of the double combinations were synergistic, whereas 5% showed antagonism. Forty-three percent of the triple combinations were synergistic with no antagonism observed, and 100% synergism was observed in combination of ciprofloxacin, amikacin, and ceftazidime. The presented protocol is simple and fast and can help the clinicians in the early selection of the effective antibiotic therapy for treatment of severe infections.
Collapse
|
19
|
Liang B, Wheeler JS, Blanchette LM. Impact of Combination Antibiogram and Related Education on Inpatient Fluoroquinolone Prescribing Patterns for Patients With Health Care-Associated Pneumonia. Ann Pharmacother 2016; 50:172-9. [PMID: 26783358 DOI: 10.1177/1060028015625658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous studies have shown that development of a unit-specific combination antibiogram improves optimal selection of empiric therapy for Gram-negative infections, yet no published data exist regarding the role of the combination antibiogram as an antimicrobial stewardship program tool for disease-specific prescribing. OBJECTIVE To evaluate the utility of a combination antibiogram to guide antibiotic prescribing for patients with health care-associated pneumonia (HCAP). METHODS This was a retrospective preprovider and postprovider education intervention study aimed to evaluate fluoroquinolone (FQ) use in patients with HCAP. Data were collected retrospectively to evaluate antibiotic prescribing patterns and patient outcomes. RESULTS A total of 87 patients were eligible for study inclusion. The primary end point, FQ days of therapy (DOT) was decreased by 2.3 days (P < 0.001). The secondary end point included FQ DOT per 1000 patient-days in patients with discharge diagnosis-related group of pneumonia and was decreased by 83.5 days (P = 0.08); double coverage reduced by 13% postintervention (P = 0.22); mean days of double coverage decreased by 2.1 days (P < 0.001), and length of stay was shortened by 2.1 days (P = 0.22). Clinical success was achieved more often in the postintervention group (90% vs 98%, P = 0.18) when compared with the preintervention group. No difference was found in microbiological outcomes in the subset of microbiologically evaluable patients (P = 0.57). CONCLUSION Facility-specific combination antibiograms may be used to inform antibiotic prescribing in HCAP patients.
Collapse
Affiliation(s)
- Baoqi Liang
- Novant Health Presbyterian Medical Center, Charlotte, NC, USA
| | | | | |
Collapse
|
20
|
Raman G, Avendano E, Berger S, Menon V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: systematic review and meta-analysis. BMC Infect Dis 2015; 15:395. [PMID: 26423743 PMCID: PMC4589179 DOI: 10.1186/s12879-015-1123-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background The rapid global spread of multi-resistant bacteria and loss of antibiotic effectiveness increases the risk of initial inappropriate antibiotic therapy (IAT) and poses a serious threat to patient safety. We conducted a systematic review and meta-analysis of published studies to summarize the effect of appropriate antibiotic therapy (AAT) or IAT against gram-negative bacterial infections in the hospital setting. Methods MEDLINE, EMBASE, and Cochrane CENTRAL databases were searched until May 2014 to identify English-language studies examining use of AAT or IAT in hospitalized patients with Gram-negative pathogens. Outcomes of interest included mortality, clinical cure, cost, and length of stay. Citations and eligible full-text articles were screened in duplicate. Random effect models meta-analysis was used. Results Fifty-seven studies in 60 publications were eligible. AAT was associated with lower risk of mortality (unadjusted summary odds ratio [OR] 0.38, 95 % confidence interval [CI] 0.30-0.47, 39 studies, 5809 patients) and treatment failure (OR 0.22, 95 % CI 0.14–0.35; 3 studies, 283 patients). Conversely, IAT increased risk of mortality (unadjusted summary OR 2.66, 95 % CI 2.12–3.35; 39 studies, 5809 patients). In meta-analyses of adjusted data, AAT was associated with lower risk of mortality (adjusted summary OR 0.43, 95 % CI 0.23–0.83; 6 studies, 1409 patients). Conversely, IAT increased risk of mortality (adjusted summary OR 3.30, 95 % CI 2.42–4.49; 16 studies, 2493 patients). A limited number of studies suggested higher cost and longer hospital stay with IAT. There was considerable heterogeneity in the definition of AAT or IAT, pathogens studied, and outcomes assessed. Discussion Using a large set of studies we found that IAT is associated with a number of serious consequences,including an increased risk of hospital mortality. Infections caused by drug-resistant, Gram-negative organisms represent a considerable financial burden to healthcare systems due to the increased costs associated with the resources required to manage the infection, particularly longer hospital stays. However, there were insufficient data that evaluated AAT for the outcome of costs among patients with nosocomialGram-negative infections. Conclusions IAT in hospitalized patients with Gram-negative infections is associated with adverse outcomes. Technological advances for rapid diagnostics to facilitate AAT along with antimicrobial stewardship, surveillance, infection control, and prevention is needed. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1123-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gowri Raman
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Box 63, 800 Washington Street, Boston, MA, 02111, USA. .,Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA, 02111, USA.
| | - Esther Avendano
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Box 63, 800 Washington Street, Boston, MA, 02111, USA.
| | - Samantha Berger
- Tufts University Friedman School of Nutrition Science and Policy, 150 Harrison Avenue, Boston, MA, 02111, USA.
| | - Vandana Menon
- Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA, 02111, USA. .,Currently employed at Baxalta and a former employee of Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA, 02421, USA.
| |
Collapse
|
21
|
|
22
|
Cole MR, Hobden JA, Warner IM. Recycling antibiotics into GUMBOS: a new combination strategy to combat multi-drug-resistant bacteria. Molecules 2015; 20:6466-87. [PMID: 25867831 PMCID: PMC6272440 DOI: 10.3390/molecules20046466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022] Open
Abstract
The emergence of multi-drug-resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded β-lactam antibiotics (ampicillin, carbenicillin, cephalothin and oxacillin) and a well-known antiseptic (chlorhexidine di-acetate) were fashioned into a group of uniform materials based on organic salts (GUMBOS) as an alternative to conventional combination drug dosing strategies. The antibacterial activity of precursor ions (e.g., chlorhexidine diacetate and β-lactam antibiotics), GUMBOS and their unreacted mixtures were studied with 25 clinical isolates with varying antibiotic resistance using a micro-broth dilution method. Acute cytotoxicity and therapeutic indices were determined using fibroblasts, endothelial and cervical cell lines. Intestinal permeability was predicted using a parallel artificial membrane permeability assay. GUMBOS formed from ineffective β-lactam antibiotics and cytotoxic chlorhexidine diacetate exhibited unique pharmacological properties and profound antibacterial activity at lower concentrations than the unreacted mixture of precursor ions at equivalent stoichiometry. Reduced cytotoxicity to invasive cell types commonly found in superficial and chronic wounds was also observed using GUMBOS. GUMBOS show promise as an alternative combination drug strategy for treating wound infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Marsha R Cole
- Commodity Utilization, Southern Regional Research Center, Agricultural Research Services, United States Department of Agriculture, New Orleans, LA 70124, USA.
| | - Jeffery A Hobden
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, New Orleans, LA 70112, USA.
| | - Isiah M Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
23
|
Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. Pathog Dis 2015; 73:1-14. [PMID: 25066236 DOI: 10.1111/2049-632x.12208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most intractable human pathogens that pose serious clinical challenge due to extensive prevalence of multidrug-resistant clinical isolates. Armed with abundant virulence and antibiotic resistance mechanisms, it is a major etiologic agent in a number of acute and chronic infections. A complex and intricate network of regulators dictates the expression of pathogenicity factors in P. aeruginosa. Some proteins within the network play key roles and control multiple pathways. This review discusses the role of one such protein, AmpR, which was initially recognized for its role in antibiotic resistance by regulating AmpC β-lactamase. Recent genomic, proteomic and phenotypic analyses demonstrate that AmpR regulates expression of hundreds of genes that are involved in diverse pathways such as β-lactam and non-β-lactam resistance, quorum sensing and associated virulence phenotypes, protein phosphorylation, and physiological processes. Finally, ampR mutations in clinical isolates are reviewed to shed light on important residues required for its function in antibiotic resistance. The prevalence and evolutionary implications of AmpR in pathogenic and nonpathogenic proteobacteria are also discussed. A comprehensive understanding of proteins at nodal positions in the P. aeruginosa regulatory network is crucial in understanding, and ultimately targeting, the pathogenic stratagems of this organism.
Collapse
Affiliation(s)
| | - Hansi Kumari
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
24
|
Heil EL, Lowery AV, Thom KA, Nicolau DP. Treatment of Multidrug-Resistant Pseudomonas aeruginosa
Using Extended-Infusion Antimicrobial Regimens. Pharmacotherapy 2014; 35:54-8. [DOI: 10.1002/phar.1514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emily L. Heil
- Department of Pharmacy; University of Maryland Medical Center; Baltimore Maryland
| | - Ashleigh V. Lowery
- Department of Pharmacy; University of Maryland Medical Center; Baltimore Maryland
| | - Kerri A. Thom
- University of Maryland School of Medicine; Baltimore Maryland
| | - David P. Nicolau
- Center for Anti-infective Research; Hartford Hospital; Hartford Connecticut
| |
Collapse
|
25
|
Activities of antibiotic combinations against resistant strains of Pseudomonas aeruginosa in a model of infected THP-1 monocytes. Antimicrob Agents Chemother 2014; 59:258-68. [PMID: 25348528 DOI: 10.1128/aac.04011-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antibiotic combinations are often used for treating Pseudomonas aeruginosa infections but their efficacy toward intracellular bacteria has not been investigated so far. We have studied combinations of representatives of the main antipseudomonal classes (ciprofloxacin, meropenem, tobramycin, and colistin) against intracellular P. aeruginosa in a model of THP-1 monocytes in comparison with bacteria growing in broth, using the reference strain PAO1 and two clinical isolates (resistant to ciprofloxacin and meropenem, respectively). Interaction between drugs was assessed by checkerboard titration (extracellular model only), by kill curves, and by using the fractional maximal effect (FME) method, which allows studying the effects of combinations when dose-effect relationships are not linear. For drugs used alone, simple sigmoidal functions could be fitted to all concentration-effect relationships (extracellular and intracellular bacteria), with static concentrations close to (ciprofloxacin, colistin, and meropenem) or slightly higher than (tobramycin) the MIC and with maximal efficacy reaching the limit of detection in broth but only a 1 to 1.5 (colistin, meropenem, and tobramycin) to 2 to 3 (ciprofloxacin) log10 CFU decrease intracellularly. Extracellularly, all combinations proved additive by checkerboard titration but synergistic using the FME method and more bactericidal in kill curve assays. Intracellularly, all combinations proved additive only based on both FME and kill curve assays. Thus, although combinations appeared to modestly improve antibiotic activity against intracellular P. aeruginosa, they do not allow eradication of these persistent forms of infections. Combinations including ciprofloxacin were the most active (even against the ciprofloxacin-resistant strain), which is probably related to the fact this drug was the most effective alone intracellularly.
Collapse
|
26
|
Curello J, MacDougall C. Beyond Susceptible and Resistant, Part II: Treatment of Infections Due to Gram-Negative Organisms Producing Extended-Spectrum β-Lactamases. J Pediatr Pharmacol Ther 2014; 19:156-64. [PMID: 25309145 DOI: 10.5863/1551-6776-19.3.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The production of β-lactamase is the most common mechanism of resistance to β-lactam antibiotics among gram-negative bacteria. Extended-spectrum β-lactamases (ESBLs) are capable of hydrolyzing most penicillins, extended-spectrum cephalosporins, and aztreonam, but their activity is suppressed in the presence of a β-lactamase inhibitor. Serious infections with ESBL-producing isolates are associated with high rates of mortality, making early detection and adequate medical management essential to ensure optimal patient outcomes. Much controversy has centered on the recommendations for testing and reporting of antibiotic susceptibility of potential ESBL-producing organisms. The latest version of the Clinical Laboratory Standards Institute (CLSI) susceptibility reporting guidelines, published in 2010, no longer advocates for phenotypic testing of ESBL-producing isolates. From newer studies demonstrating a correlation between organism minimum inhibitory concentration (MIC) and clinical outcome, along with pharmacokinetic/pharmacodynamic (PK/PD) modeling demonstrating the importance of the MIC to achieving therapeutic targets, the CLSI has assigned lower susceptibility breakpoints for aztreonam and most cephalosporins. The new guidelines recommend using the lower MIC breakpoints to direct antibiotic selection. This article reviews the microbiology and epidemiology of ESBLs, the recent change in CLSI susceptibility reporting guidelines for ESBLs, and the clinical and PK/PD data supporting the relationship between in vitro susceptibility and clinical outcome. Finally, considerations for antimicrobial selection when treating patients with infections caused by ESBL-producing organisms from various sources are discussed.
Collapse
Affiliation(s)
- Jennifer Curello
- Department of Pharmaceutical Services, University of California Los Angeles Medical Center, Los Angeles, California
| | - Conan MacDougall
- Department of Clinical Pharmacy, University of California, San Francisco School of Pharmacy, San Francisco, California
| |
Collapse
|
27
|
Kumari H, Balasubramanian D, Zincke D, Mathee K. Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol 2014; 63:544-555. [PMID: 24464693 DOI: 10.1099/jmm.0.070185-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in P. aeruginosa is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in P. aeruginosa PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml(-1), adversely affected the efficacy of clinically used penicillins and cephalosporins. The high β-lactam resistance was due to elevated expression of both ampC and ampR, encoding a chromosomal β-lactamase and its regulator, respectively. Differences in the susceptibility of ampR and ampC mutants suggested non-AmpC-mediated regulation of β-lactam resistance by AmpR. The increased susceptibility of P. aeruginosa in the absence of ampR to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF-OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the mexEF efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of ampR. The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Hansi Kumari
- Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.,Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Diansy Zincke
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.,Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
28
|
Molina-Quiroz RC, Loyola DE, Muñoz-Villagrán CM, Quatrini R, Vásquez CC, Pérez-Donoso JM. DNA, cell wall and general oxidative damage underlie the tellurite/cefotaxime synergistic effect in Escherichia coli. PLoS One 2013; 8:e79499. [PMID: 24260236 PMCID: PMC3832599 DOI: 10.1371/journal.pone.0079499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/21/2013] [Indexed: 01/25/2023] Open
Abstract
The constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, the molecular mechanism underlying this phenomenon is proposed. Global changes of the transcriptional profile of Escherichia coli exposed to tellurite/CTX were determined by DNA microarrays. Induction of a number of stress regulators (as SoxS), genes related to oxidative damage and membrane transporters was observed. Accordingly, increased tellurite adsorption/uptake and oxidative injuries to proteins and DNA were determined in cells exposed to the mixture of toxicants, suggesting that the tellurite-mediated CTX-potentiating effect is dependent, at least in part, on oxidative stress. Thus, the synergistic tellurite-mediated CTX-potentiating effect depends on increased tellurite uptake/adsorption which results in damage to proteins, DNA and probably other macromolecules. Our findings represent a contribution to the current knowledge of bacterial physiology under antibiotic stress and can be of great interest in the development of new antibiotic-potentiating strategies.
Collapse
Affiliation(s)
- Roberto C. Molina-Quiroz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - David E. Loyola
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia M. Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Raquel Quatrini
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia y Vida, Santiago, Chile
| | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail: (CCV); (JMP)
| | - José M. Pérez-Donoso
- Microbiology and Bionanotechnology Research Group, Laboratorio de Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB), Bionanotechnology and Microbiology Lab, Santiago, Chile
- * E-mail: (CCV); (JMP)
| |
Collapse
|
29
|
Queenan AM, Davies TA, He W, Lynch AS. Assessment of the combination of doripenem plus a fluoroquinolone against non-susceptibleAcinetobacter baumanniiisolates from nosocomial pneumonia patients. J Chemother 2013; 25:141-7. [DOI: 10.1179/1973947813y.0000000074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 2013; 57:6319-24. [PMID: 24100504 DOI: 10.1128/aac.00254-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochrome c, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochrome c or albumin fragments resulted in a significant decrease in urinary N-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochrome c with colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.
Collapse
|
31
|
Valade E, Davin-Regli A, Bolla JM, Pagès JM. Bacterial Membrane, a Key for Controlling Drug Influx and Efflux. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
McConeghy KW, Bleasdale SC, Rodvold KA. The Empirical Combination of Vancomycin and a -Lactam for Staphylococcal Bacteremia. Clin Infect Dis 2013; 57:1760-5. [DOI: 10.1093/cid/cit560] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Adnan S, Paterson DL, Lipman J, Roberts JA. Ampicillin/sulbactam: its potential use in treating infections in critically ill patients. Int J Antimicrob Agents 2013; 42:384-9. [PMID: 24041466 DOI: 10.1016/j.ijantimicag.2013.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 01/21/2023]
Abstract
The purpose of this paper was to review the potential utility of ampicillin/sulbactam (SAM) as a therapy for serious infections in critically ill patients. Data for this review were identified by searches of PubMed and of the reference lists of the included articles. We found that SAM appears to have a number of characteristics that support its use in the treatment of serious infections in critically ill patients. SAM demonstrates extensive penetration into many infection sites, supporting its use in a wide range of infection types. Microbiologically, sulbactam has strong intrinsic antibiotic activity against multidrug-resistant (MDR) bacteria, including Acinetobacter baumannii, which supports its use for the treatment of infections mediated by this pathogen. Of some concern, there have been reports showing a decline in susceptibility of some bacteria to SAM. As such, use of lower doses (4/2g/day), particularly for MDR A. baumannii, has been linked with a 30% reduced success rate in critically ill patients. The therapeutic challenges for ensuring achievement of optimal dosing of SAM result partly from bacterial susceptibility but also from the pharmacokinetic (PK) alterations common to β-lactam agents in critical illness. These PK changes are likely to reduce the ability of standard dosing to achieve the concentrations observed in non-critically ill patients. Optimisation of therapy may be more likely with the use of higher doses, administration by 4h infusion or by combination therapy, particularly for the treatment of infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Syamhanin Adnan
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
34
|
Soothill G, Hu Y, Coates A. Can we prevent antimicrobial resistance by using antimicrobials better? Pathogens 2013; 2:422-35. [PMID: 25437042 PMCID: PMC4235724 DOI: 10.3390/pathogens2020422] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/24/2013] [Accepted: 06/01/2013] [Indexed: 12/05/2022] Open
Abstract
Since their development over 60 years ago, antimicrobials have become an integral part of healthcare practice worldwide. Recently, this has been put in jeopardy by the emergence of widespread antimicrobial resistance, which is one of the major problems facing modern medicine. In the past, the development of new antimicrobials kept us one step ahead of the problem of resistance, but only three new classes of antimicrobials have reached the market in the last thirty years. A time is therefore approaching when we may not have effective treatment against bacterial infections, particularly for those that are caused by Gram-negative organisms. An important strategy to reduce the development of antimicrobial resistance is to use antimicrobials more appropriately, in ways that will prevent resistance. This involves a consideration of the pharmacokinetic and pharmacodynamics properties of antimicrobials, the possible use of combinations, and more appropriate choice of antimicrobials, which may include rapid diagnostic testing and antimicrobial cycling. Examples given in this review include Mycobacterium tuberculosis, Gram-negative and Gram-positive organisms. We shall summarise the current evidence for these strategies and outline areas for future development.
Collapse
Affiliation(s)
- Germander Soothill
- Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, Garrod Building, Turner Street, Whitechapel, London, E1 2AD, UK.
| | - Yanmin Hu
- Medical Microbiology, Centre for Infection, Division of Clinical Studies, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Anthony Coates
- Medical Microbiology, Centre for Infection, Division of Clinical Studies, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
35
|
Bartzatt R, Cirillo SLG, Cirillo JD. Antibacterial Derivatives of Ciprofloxacin to Inhibit Growth of Necrotizing Fasciitis Associated Penicillin Resistant Escherichia coli. JOURNAL OF PHARMACEUTICS 2013; 2013:517638. [PMID: 26555983 PMCID: PMC4590791 DOI: 10.1155/2013/517638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/17/2022]
Abstract
Escherichia coli (E. coli) is associated with necrotizing fasciitis (type I) and can induce enough damage to tissue causing hypoxia. Three ester derivatives of the broad-spectrum antibiotic ciprofloxacin were placed into bacteria culture simultaneously with the parent ciprofloxacin (drug 1) to ascertain the level of antibacterial activity. The n-propyl (drug 2), n-pentyl (drug 3), and n-octyl (drug 4) esters of ciprofloxacin were synthesized under mixed phase conditions and by microwave excitation. The formation of ester derivatives of ciprofloxacin modified important molecular properties such as Log P and polar surface area which improves tissue penetration, yet preserved strong antibacterial activity. The Log P values for drugs 1, 2, 3, and 4 became -0.701, 0.437, 1.50, and 3.02, respectively. The polar surface areas for drugs 1, 2, 3, and 4 were determined to be 74.6 Angstroms(2), 63.6 Angstroms(2), 63.6 Angstroms(2), and 63.6 Angstroms(2), respectively. These values of Log P and polar surface area improved tissue penetration, as indicated by the determination of dermal permeability coefficient (K p ) and subsequently into the superficial fascial layer. All drugs induced greater than 60% bacterial cell death at concentrations less than 1.0 micrograms/milliliter. The ester derivatives of ciprofloxacin showed strong antibacterial activity toward penicillin resistant E. coli.
Collapse
Affiliation(s)
- Ronald Bartzatt
- University of Nebraska, College of Arts & Sciences, Durham Science Center, Department of Chemistry, Omaha, NE 68182, USA
| | - Suat L. G. Cirillo
- Texas A & M Health Science Center, Department of Microbial and Molecular Pathogenesis, Bryan, TX 77807, USA
| | - Jeffrey D. Cirillo
- Texas A & M Health Science Center, Department of Microbial and Molecular Pathogenesis, Bryan, TX 77807, USA
| |
Collapse
|
36
|
Kees MG. [Strategies to avoid antibiotic resistance]. Med Klin Intensivmed Notfmed 2013; 108:125-30. [PMID: 23344520 DOI: 10.1007/s00063-012-0158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Antibiotics are used very frequently in critically ill patients as a causal and often life-saving treatment; however, the high density of use of broad spectrum antibiotics contributes to a further deterioration in resistance trends, which makes a rational prescription behavior mandatory. This particularly includes measures which lead to the reduction of antibiotic use, i.e. rigorous indications, targeted de-escalation and limited duration. For optimal efficacy of a necessary treatment the integration of pharmacokinetic and pharmacodynamic principles can be helpful.
Collapse
Affiliation(s)
- M G Kees
- Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin.
| |
Collapse
|
37
|
Use of xylitol to enhance the therapeutic efficacy of polymethylmethacrylate-based antibiotic therapy in treatment of chronic osteomyelitis. Antimicrob Agents Chemother 2012; 56:5839-44. [PMID: 22948866 DOI: 10.1128/aac.01127-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a rabbit model of postsurgical osteomyelitis, we demonstrate that incorporation of xylitol into polymethylmethacrylate (PMMA) bone cement enhances the elution of daptomycin under in vivo conditions. We also demonstrate that this can be correlated with an improved therapeutic outcome in the treatment of a chronic bone infection following surgical debridement.
Collapse
|
38
|
Abstract
Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to determine if new agents will reach sufficient concentrations at infection sites to predict clinical efficacy without toxicity. It will also be key to consider antimicrobial stewardship as an important component of the continuing battle to prevent the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Robert P Rennie
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|