1
|
Ibrahim SM, Sayed MS, Abo-Elmatty DM, Mesbah NM, Abdel-Hamed AR. The antitumour efficacy of hesperidin vs. cisplatin against non-small lung cancer cells A549 and H460 via targeting the miR-34a/PD-L1/NF-κ B signalling pathway. Contemp Oncol (Pozn) 2024; 28:130-148. [PMID: 39421711 PMCID: PMC11480907 DOI: 10.5114/wo.2024.141648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Lung cancer is the most common type of cancer, causing worldwide mortality. Therefore, this study is necessary for continuing research into new effective and safe treatments. Recently, herbal medicines have been used for the treatment of various diseases such as cancer. This study aimed to investigate the potential anti-proliferative activity and investigate the mechanisms of hesperidin extract on the non-small lung cancer cells A549 and H460 vs. cisplatin via targeting the miR 34a/PD-L1/NF-κB signalling pathway. Material and methods To determine the cytotoxic effects of the hesperidin extract on non-small lung cancer cells, sulphorhdamine B assay was performed. To show the inhibition of migration by hesperidin extract, wound healing assay was conducted. A quantitative polymerase chain reaction test was used to quantify the expressions of miR-34a, programmed cell death ligand-1 (PDL-1), epidermal growth factor receptor (EGFR), and P53 genes, which are involved in apoptosis pathway. Also, cell cycle assay was performed by using a flow cytometer. Results The hesperidin extract could significantly inhibit proliferation of non-small lung cancer cells A549 and H460. Western blot assay demonstrated that hesperidin induced suppression of nuclear factor κB signalling pathway. The messenger RNA expression levels of MiR-34a and P53 were up-regulated significantly by hesperidin treatment, while the EGFR and P53 genes were down-regulated. The flow cytometer confirmed that cell cycle arrest occurred at the sub-G1 and G2 phases in A549 and H460, respectively. Conclusions Our study demonstrated that hesperidin extract could significantly inhibit non-small lung cancer cell growth by induction of the apoptosis signalling pathway. Therefore, hesperidin might open novel strategies for effective and safe cancer treatment and reduce the adverse side effects of several chemotherapeutic treatments such as cisplatin.
Collapse
Affiliation(s)
- Sherine M. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Maryam S. Sayed
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Vinh Nguyen P, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E. WITHDRAWN: In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. Int J Pharm 2023; 632:122335. [PMID: 36283640 DOI: 10.1016/j.ijpharm.2022.122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Abstract
This article was withdrawn from International Journal of Pharmaceutics in order to be published in International Journal of Pharmaceutics: X. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France; School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Laurie Lajoie
- ISP UMR1282, INRAE, équipe BioMAP, Université de Tours, Tours, France
| | - Yoann Misericordia
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
3
|
Nguyen PV, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E. In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. Int J Pharm X 2022; 4:100139. [PMID: 36420371 PMCID: PMC9676141 DOI: 10.1016/j.ijpx.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apoptosis is an important process that directly affects the response of cancer cells to anticancer drugs. Among different factors involved in this process, the BcL-xL protein plays a critical role in inhibiting apoptosis induced by chemotherapy agents. Henceforth, its downregulation may have a synergistic activity that lowers the necessary dose of anticancer agents. In this study, anti-Bcl-xL siRNA were formulated within an EGFR-targeted nanomedicine with scFv ligands (NM-scFv) and its activity was tested in the non-small cell lung cancer (NSCLC) cell line H460. The obtained NMs-scFv anti-Bcl-xL were suitable for intravenous injection with sizes around 100 nm, a high monodispersity level and good siRNA complexation capacity. The nanocomplex's functionalization with anti-EGFR scFv ligands was shown to allow an active gene delivery into H460 cells and led to approximately 63% of gene silencing at both mRNA and protein levels. The NM-scFv anti-Bcl-xL improved the apoptotic activity of cisplatin and reduced the cisplatin IC50 value in H460 cells by a factor of around three from 0.68 ± 0.12 μM to 2.21 ± 0.18 μM (p < 0.01), respectively, in comparison to that of NM-scFv formulated with control siRNA (p > 0.05).
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
- School of Medicine, Vietnam National University Ho Chi Minh city, Ho Chi Minh city, Viet Nam
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Laurie Lajoie
- ISP UMR1282, INRAE, équipe BioMAP, Université de Tours, Tours, France
| | - Yoann Misericordia
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
4
|
Maddah SM, Mostafavi G, Amin Malek M, Anbarestani M, Sharif Y, Mir Hassani Z. Combined application of cisplatin and salicylic acid suppresses cell growth and promotes apoptosis in human lung cancer cell lines. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Zamagni A, Pasini A, Pirini F, Ravaioli S, Giordano E, Tesei A, Calistri D, Ulivi P, Fabbri F, Foca F, Delmonte A, Molinari C. CDKN1A upregulation and cisplatin‑pemetrexed resistance in non‑small cell lung cancer cells. Int J Oncol 2020; 56:1574-1584. [PMID: 32236605 PMCID: PMC7170038 DOI: 10.3892/ijo.2020.5024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Cisplatin-pemetrexed is a frequently adopted first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) ineligible for biological therapy, notwithstanding its limited efficacy. In the present study, the RAL cell line, an epidermal growth factor receptor (EGFR)-wild-type, p53- and KRAS-mutated model of NSCLC, was used to investigate novel biomarkers of resistance to this treatment. Cells were analyzed 96 h (96 h-post wo) and 21 days (21 days-post wo) after the combined treatment washout. Following an initial moderate sensitivity to the treatment, the cell growth proliferative capability had fully recovered. Gene expression analysis of the resistant surviving cells revealed a significant upregulation of CDKN1A expression in the cells at 96-h post-wo and, although to a lesser extent, in the cells at 21 days-post wo, accompanied by an enrichment of acetylated histone H3 in its promoter region. CDKN1A was also upregulated at the protein level, being mainly detected in the cytoplasm of the cells at 96 h-post wo. A marked increase in the number of apoptotic cells, together with a significant G1 phase block, were observed at 96-h post wo in the cells in which CDKN1A was knocked down, suggesting its involvement in the modulation of the response of RAL cells to the drug combination. On the whole, these data suggest that CDKN1A plays a role in the response to the cisplatin-pemetrexed combination in advanced KRAS-mutated NSCLC, thus suggesting that it may be used as a promising predictive marker.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alice Pasini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
6
|
Eslamparast A, Abbasgholizadeh R, Ostad SN, Gharghabi M, Ghahremani MH. N-Terminal Domain of Fragile Histidine Triad Exerts Potent Cytotoxic Effect in HT1080 Cells and Increases Doxorubicin Cytotoxicity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:254-262. [PMID: 31089360 PMCID: PMC6487436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fragile histidine triad (FHIT) serves a critical function as a tumor suppressor that inhibits p53 degradation by mouse double minute 2 (MDM2). The functional domains of FHIT involved in tumor inhibition was interpreted. In-silico screening data were employed to construct truncated forms of FHIT to assess their cytotoxic effects on the HT1080 cell line. Full FHIT expression was confirmed by western blotting and expression of two FHIT truncates were confirmed by RT-PCR. Transfection of these truncated forms into HT1080 cells showed that the N-terminal truncated form (amino acids 17-102) better inhibited proliferation than the full-length FHIT. The combined effects of these truncated forms augmented doxorubicin-induced cytotoxicity. Functional analysis demonstrated that these fragments and their combination with doxorubicin can arrest cells in the G2 phase of the cell cycle as specified by flow cytometry. The FHIT functional domains can be used as lead compounds for development of drug designs and gene transfer for cancer therapy.
Collapse
Affiliation(s)
- Ameneh Eslamparast
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. ,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Reza Abbasgholizadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Gharghabi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
7
|
Wan Q, Shen Y, Zhao H, Wang B, Zhao L, Zhang Y, Bu X, Wan M, Shen C. Impaired DNA double‐strand breaks repair by kinesin family member 4A inhibition renders human H1299 non‐small‐cell lung cancer cells sensitive to cisplatin. J Cell Physiol 2018; 234:10360-10371. [DOI: 10.1002/jcp.27703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University Nanjing China
| | - Yong Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Bei Wang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Lei Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Meiling Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| |
Collapse
|
8
|
Bryant JL, Gieling RG, Meredith SL, Allen TJ, Walker L, Telfer BA, Supuran CT, Williams KJ, White A. Novel carbonic anhydrase IX-targeted therapy enhances the anti-tumour effects of cisplatin in small cell lung cancer. Int J Cancer 2017; 142:191-201. [DOI: 10.1002/ijc.31042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jennifer L Bryant
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | - Roben G Gieling
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | - Suzanne L Meredith
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| | - Tiffany-Jayne Allen
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| | - Leanne Walker
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| | - Brian A Telfer
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | | | - Kaye J Williams
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| |
Collapse
|
9
|
Hou L, Gu F, Gao G, Zhou C. Transcutaneous electrical acupoint stimulation (TEAS) ameliorates chemotherapy-induced bone marrow suppression in lung cancer patients. J Thorac Dis 2017; 9:809-817. [PMID: 28449490 DOI: 10.21037/jtd.2017.03.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND To investigate the effect of percutaneous electrical stimulation on chemotherapy-induced bone marrow suppression in patients with lung cancer. METHODS From December 2014 to August 2015, one hundred ninety-one non-small cell lung cancer patients with chemotherapy naive were randomly divided into control group, medication group, and transcutaneous electrical acupoint stimulation (TEAS) group. Patients with the control group received routine nursing care, the medication group was treated by oral administration of prophylactic agents, and TEAS group received electrical stimulation of acupoints including Dazhui (DU14), Geshu (BL17), Zusanli (ST36), Sanyinjiao (SP6), and Hegu (LI4). The primary end point was the blood routine indexes and secondary end point was the degree of comfort. RESULTS The white blood cell in the TEAS group was significantly higher than the control group on day 8 and day 14 (P<0.05). The platelet count in the TEAS group was significantly higher than control group on day 5, day 8 and day 11 (P<0.05). The comfort score in the TEAS group was significantly higher than control group on day 8 (P<0.05). CONCLUSIONS Percutaneous electrical stimulation of acupoints could prevent chemotherapy-induced bone marrow suppression in lung cancer patients and ensure a smooth continuation of chemotherapy.
Collapse
Affiliation(s)
- Lili Hou
- Department of Nursing, Shanghai Pulmonary Hospital of Tongji University, Shanghai 200043, China
| | - Fen Gu
- Respiratory Department, Shanghai Pulmonary Hospital of Tongji University, Shanghai 200043, China
| | - Guanghui Gao
- Department of Oncology, Shanghai Pulmonary Hospital of Tongji University, Shanghai 200043, China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital of Tongji University, Shanghai 200043, China
| |
Collapse
|
10
|
Duan S, Tsai Y, Keng P, Chen Y, Lee SO, Chen Y. IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules. Oncotarget 2016; 6:27651-60. [PMID: 26313152 PMCID: PMC4695015 DOI: 10.18632/oncotarget.4753] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
Cisplatin-based chemotherapy is currently the most effective treatment regimen for non-small cell lung cancer (NSCLC), but eventually tumor resistance develops which limits its success. The potential implication of IL-6 signaling in the cisplatin resistance of NSCLC was explored by testing whether NSCLC cells with different levels of intracellular IL-6 show different responses to the cytotoxic treatment of cisplatin. When the cisplatin cytotoxicity of the IL-6 knocked down human NSCLC cells (A549IL-6si and H157IL-6si) were compared with their corresponding scramble control cells (A549sc and H157sc), higher cisplatin cytotoxicity was found in IL-6 si cells than sc cells. Subcutaneous xenograft mouse models were developed using a pair of A549sc and A549IL-6si cells. When the tumor grew to about 400 mm2, mice were treated with cisplatin and tumor regression was monitored. Higher tumor regression was detected in the A549IL-6si xenografts compared to A549sc xenografts following cisplatin treatment. Immunostaining study results from tumor tissues also supported this finding. Expression of anti-apoptotic proteins Bcl-2 and Mcl-1 and DNA repair associated molecules ATM, CHK1, TP73, p53, and ERCC1 were significantly up regulated in cisplatin-treated A549sc and H157sc cells, but no increase was detected in A549IL-6si and H157IL-6si cells. Further inhibitor studies revealed that up regulation of these molecules by IL-6 may be through activation of IL-6 downstream signaling pathways like Akt, MAPK, Stat3, and Erk. These results provide potential for combining cisplatin and inhibitors of IL-6 signaling or its downstream signaling pathway as a future therapeutic approach in preventing development of cisplatin resistant NSCLC tumors.
Collapse
Affiliation(s)
- Shanzhou Duan
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Peter Keng
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Soo Ok Lee
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Marostica LL, Silva IT, Kratz JM, Persich L, Geller FC, Lang KL, Caro MSB, Durán FJ, Schenkel EP, Simões CMO. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549. Chem Res Toxicol 2015; 28:1949-60. [PMID: 26372186 DOI: 10.1021/acs.chemrestox.5b00153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.
Collapse
Affiliation(s)
- Lucas Lourenço Marostica
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Izabella Thaís Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Jadel Müller Kratz
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Lara Persich
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Fabiana Cristina Geller
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Karen Luise Lang
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Miguel Soriano Balparda Caro
- Departamento de Química, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Fernando Javier Durán
- UMYMFOR-CONICET, Departamento de Química Orgánica, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Eloir Paulo Schenkel
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
12
|
Seo KH, Ryu HW, Park MJ, Park KH, Kim JH, Lee MJ, Kang HJ, Kim SL, Lee JH, Seo WD. Mangosenone F, A Furanoxanthone from Garciana mangostana, Induces Reactive Oxygen Species-Mediated Apoptosis in Lung Cancer Cells and Decreases Xenograft Tumor Growth. Phytother Res 2015; 29:1753-60. [PMID: 26310849 DOI: 10.1002/ptr.5428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 11/08/2022]
Abstract
Mangosenone F (MSF), a natural xanthone, was isolated form Carcinia mangotana, and a few studies have reported its glycosidase inhibitor effect. In this study we investigated the anti lung cancer effect of MSF both in vitro and in vivo. MSF inhibited cancer cell cytotoxicity and induced and induced apoptosis via reactive oxygen species (ROS) generation in NCI-H460. MSF treatment also showed in pronounced release of apoptogenic cytochrome c from the mitochondria to the cytosol, downregulation of Bcl-2 and Bcl-xL, and upregulation of Bax, suggesting that caspase-mediated pathways were involved in MSF-induced apoptosis. ROS activation of the mitogen-activated protein kinase signaling pathway was shown to play a predominant role in the apoptosis mechanism of MSF. Compared with cisplatin treatment, MSF treatment showed significantly increased inhibition of the growth of NCI-H460 cells xenografted in nude mice. Together, these results indicate the potential of MSF as a candidate natural anticancer drug by promoting ROS production.
Collapse
Affiliation(s)
- Kyung Hye Seo
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, 363-883, Republic of Korea
| | - Mi Jin Park
- Division of Applied Biosciences College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 program), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jin Hyo Kim
- Division of Applied Life Science (BK21 program), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mi-Ja Lee
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Hyeon Jung Kang
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Sun Lim Kim
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Jin Hwan Lee
- National Institute of Chemical Safety, Ministry of Environment, Daejeon, 305-343, Republic of Korea
| | - Woo Duck Seo
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| |
Collapse
|
13
|
Boylston JA, Brenner C. A knockdown with smoke model reveals FHIT as a repressor of Heme oxygenase 1. Cell Cycle 2015; 13:2913-30. [PMID: 25486479 DOI: 10.4161/15384101.2014.946858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fragile histidine triad (FHIT) gene deletions are among the earliest and most frequent events in carcinogenesis, particularly in carcinogen-exposed tissues. Though FHIT has been established as an authentic tumor suppressor, the mechanism underlying tumor suppression remains opaque. Most experiments designed to clarify FHIT function have analyzed the consequence of re-expressing FHIT in FHIT-negative cells. However, carcinogenesis occurs in cells that transition from FHIT-positive to FHIT-negative. To better understand cancer development, we induced FHIT loss in human bronchial epithelial cells with RNA interference. Because FHIT is a demonstrated target of carcinogens in cigarette smoke, we combined FHIT silencing with cigarette smoke extract (CSE) exposure and measured gene expression consequences by RNA microarray. The data indicate that FHIT loss enhances the expression of a set of oxidative stress response genes after exposure to CSE, including the cytoprotective enzyme heme oxygenase 1 (HMOX1) at the RNA and protein levels. Data are consistent with a mechanism in which Fhit protein is required for accumulation of the transcriptional repressor of HMOX1, Bach1 protein. We posit that by allowing superinduction of oxidative stress response genes, loss of FHIT creates a survival advantage that promotes carcinogenesis.
Collapse
Key Words
- ARE, antioxidant response element
- ApppA, diadenosine triphosphate
- BACH1
- BACH1, BTB and CNC homology 1 gene
- BMC, bone marrow cell
- CPT, camptothecin
- CSE, cigarette smoke extract
- Cigarette smoke
- FHIT
- FHIT, fragile histidine triad gene
- HMOX1
- HMOX1, heme oxygenase 1 gene
- MMC, mitomycin C
- NRF2
- Nrf2, nuclear factor erythroid derived 2-like 2 protein
- Oxidative Stress
- RNAi, RNA interference
- ROS, reactive oxygen species
- qRT-PCR, quantitative real time PCR
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Jennifer A Boylston
- a Department of Biochemistry and Program in Molecular and Cellular Biology; Carver College of Medicine ; University of Iowa ; Iowa City , IA USA
| | | |
Collapse
|
14
|
Wu DW, Lee MC, Hsu NY, Wu TC, Wu JY, Wang YC, Cheng YW, Chen CY, Lee H. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction. Oncogene 2014; 34:2505-15. [PMID: 24998847 DOI: 10.1038/onc.2014.184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
Fragile histidine triad (FHIT) loss by the two-hit mechanism of loss of heterozygosity and promoter hypermethylation commonly occurrs in non-small cell lung cancer (NSCLC) and may confer cisplatin resistance in NSCLC cells. However, the underlying mechanisms of FHIT loss in cisplatin resistance and the response to cisplatin-based chemotherapy in NSCLC patients have not yet been reported. In the present study, inhibition concentration of 50% cell viability induced by cisplatin (IC50) and soft agar growth and invasion capability were increased and decreased in FHIT-knockdown and -overexpressing cells, respectively. Mechanistically, Slug transcription is upregulated by AKT/NF-κB activation due to FHIT loss and, in turn, Slug suppresses PUMA expression; this decrease of PUMA by FHIT loss is responsible for cisplatin resistance. In addition, cisplatin resistance due to FHIT loss can be conquered by AKT inhibitor-perifosine in xenograft tumors. Among NSCLC patients, low FHIT, high p-AKT, high Slug and low PUMA were correlated with shorter overall survival, relapse-free survival and poorer response to cisplatin-based chemotherapy. Therefore, the AKT inhibitor perifosine might potentially overcome the resistance to cisplatin-based chemotherapy in NSCLC patients with low-FHIT tumors, and consequently improve the outcome.
Collapse
Affiliation(s)
- D-W Wu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - M-C Lee
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - N-Y Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - T-C Wu
- 1] Division of Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC [2] School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - J-Y Wu
- 1] Division of Thoracic Surgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan, ROC [2] Department of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Y-C Wang
- 1] Division of Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC [2] School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Y-W Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - C-Y Chen
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan, ROC
| | - H Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
15
|
Varela JG, De Chatterjee A, Guevara P, Ramirez V, Metta-Magaña AJ, Villagrán D, Varela-Ramirez A, Das S, Nuñez JE. Synthesis, characterization, and evaluation of cis-diphenyl pyridineamine platinum(II) complexes as potential anti-breast cancer agents. J Biol Inorg Chem 2014; 19:967-979. [PMID: 24737042 DOI: 10.1007/s00775-014-1133-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
Abstract
Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16 and 47 %. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin. When tested for biological activity, compounds 13 and 14 were found to inhibit the growth of MCF 7 and MDA-MB-231 cells (IC50s 1 ± 0.4 µM and 1 ± 0.2 µM for 13 and 14, respectively, and IC50 7.5 ± 1.3 µM for compound 13 and 1 ± 0.3 µM for compound 14). Incidentally, these doses were found to be lower than cisplatin doses (IC50 5 ± 0.7 µM for MCF 7 and 10 ± 1.1 µM for MDA-MB-231). Similar to cisplatin, 13 and 14 interacted with DNA and induced apoptosis. However, unlike cisplatin, they blocked the migration of MDA-MB-231 cells suggesting that in addition to apoptotic and DNA-binding capabilities, these compounds are useful in blocking the metastatic migration of breast cancer cells. To delineate the mechanism of action, computer-aided analyses (DFT calculations) were conducted for compound 13. Results indicate that in vivo, the pyridineamine ligands are likely to dissociate from the complex, forming a platinum DNA adduct with anti-proliferative activity. These results suggest that complexes 13 and 14 hold promise as potential anti-cancer agents.
Collapse
Affiliation(s)
| | - Atasi De Chatterjee
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Priscilla Guevara
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Verenice Ramirez
- Department of Chemistry, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| | | | - Dino Villagrán
- Department of Chemistry, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Siddhartha Das
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Jose E Nuñez
- Department of Chemistry, The University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
16
|
Fhit delocalizes annexin a4 from plasma membrane to cytosol and sensitizes lung cancer cells to paclitaxel. PLoS One 2013; 8:e78610. [PMID: 24223161 PMCID: PMC3819369 DOI: 10.1371/journal.pone.0078610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/14/2013] [Indexed: 11/29/2022] Open
Abstract
Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4) was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex. Here we report that overexpression of Fhit prevents Annexin A4 translocation from cytosol to plasma membrane in A549 lung cancer cells treated with paclitaxel. Moreover, paclitaxel administration in combination with AdFHIT acts synergistically to increase the apoptotic rate of tumor cells both in vitro and in vivo experiments.
Collapse
|
17
|
Barr MP, MacDonagh L, O’Byrne KJ. Markers of response to platinum-based chemotherapy in lung cancer. Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SUMMARY Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-related deaths among men and women worldwide. Despite the development of molecular targeted therapies, platinum-based combination chemotherapy remains the most effective systemic chemotherapy for NSCLC patients. Unfortunately, the outcomes of platinum-based therapies, in particular those containing cisplatin, have reached a plateau due to the development of both intrinsic and acquired resistance. While significant variations in response to platinum-based chemotherapeutic regimens exist, defining molecular features that may determine resistance or response to chemotherapy is critical. This review will focus on some of the emerging biomarkers that are predictive of response to such treatments that may offer potential in the future management of NSCLC patients.
Collapse
Affiliation(s)
- Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland
| | - Lauren MacDonagh
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland
| | - Kenneth J O’Byrne
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
18
|
Mir Mohammadrezaei F, Mohseni kouchesfehani H, Montazeri H, Gharghabi M, Ostad SN, Ghahremani MH. Signaling crosstalk of FHIT, CHK2 and p38 in etoposide induced growth inhibition in MCF-7 cells. Cell Signal 2013; 25:126-32. [DOI: 10.1016/j.cellsig.2012.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
19
|
Inactivation of both FHIT and p53 cooperate in deregulating proliferation-related pathways in lung cancer. J Thorac Oncol 2012; 7:631-42. [PMID: 22425911 DOI: 10.1097/jto.0b013e318244aed0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION FHIT and p53 are the two most commonly altered tumor suppressor genes in lung cancer, and their molecular status regulates sensitivity to anticancer drugs. Although their functions are independent, there is evidence that their pathways might be interconnected, but little is known at the molecular level. METHODS Microarray profiling of FHIT-transduced lung cancer cells and modulation of FHIT levels by RNA interference in human bronchial cells were used to generate a signature of FHIT-regulated transcripts. Expression of these genes was evaluated by real-time polymerase chain reaction in 55 primary lung cancer samples characterized for FHIT and p53 expression by immunehistochemistry. RESULTS A signature of FHIT-transcripts, particularly enriched in genes involved in cell cycle control, was identified. This signature showed overlap with p53-regulated genes, indicating possible crosstalk between these proteins. Consistently, transcriptional deregulation after FHIT modulation was higher in p53-negative cells. In primary lung cancers, inactivation of either gene was detected in 48 of 55 cases (87%) and both genes in 23 of 55 (42%) cases, confirming the central role of these pathways. Primary tumors with inactivation of both FHIT and p53 displayed the strongest deregulation of growth-related pathways with high levels of expression of CCNB1, BUB1, CDC6, TOP2A, MCM6, and CENPF. CONCLUSIONS FHIT and p53 seem to rely on common mediators, and inactivation of both genes results in prominent deregulation of growth-related pathways in lung cancer cell lines and primary tumors. This reveals crosstalk between these proteins and suggests a possible distinctive phenotype for tumors with inactivation of both genes.
Collapse
|
20
|
The Zinc Ionophore PCI-5002 Radiosensitizes Non-small Cell Lung Cancer Cells by Enhancing Autophagic Cell Death. J Thorac Oncol 2011; 6:1542-52. [DOI: 10.1097/jto.0b013e3182208fac] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol 2010; 75:173-234. [PMID: 20047843 PMCID: PMC2888634 DOI: 10.1016/j.critrevonc.2009.11.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/19/2009] [Accepted: 11/27/2009] [Indexed: 12/19/2022] Open
Abstract
While chemotherapy provides useful palliation, advanced lung cancer remains incurable since those tumors that are initially sensitive to therapy rapidly develop acquired resistance. Resistance may arise from impaired drug delivery, extracellular factors, decreased drug uptake into tumor cells, increased drug efflux, drug inactivation by detoxifying factors, decreased drug activation or binding to target, altered target, increased damage repair, tolerance of damage, decreased proapoptotic factors, increased antiapoptotic factors, or altered cell cycling or transcription factors. Factors for which there is now substantial clinical evidence of a link to small cell lung cancer (SCLC) resistance to chemotherapy include MRP (for platinum-based combination chemotherapy) and MDR1/P-gp (for non-platinum agents). SPECT MIBI and Tc-TF scanning appears to predict chemotherapy benefit in SCLC. In non-small cell lung cancer (NSCLC), the strongest clinical evidence is for taxane resistance with elevated expression or mutation of class III beta-tubulin (and possibly alpha tubulin), platinum resistance and expression of ERCC1 or BCRP, gemcitabine resistance and RRM1 expression, and resistance to several agents and COX-2 expression (although COX-2 inhibitors have had minimal impact on drug efficacy clinically). Tumors expressing high BRCA1 may have increased resistance to platinums but increased sensitivity to taxanes. Limited early clinical data suggest that chemotherapy resistance in NSCLC may also be increased with decreased expression of cyclin B1 or of Eg5, or with increased expression of ICAM, matrilysin, osteopontin, DDH, survivin, PCDGF, caveolin-1, p21WAF1/CIP1, or 14-3-3sigma, and that IGF-1R inhibitors may increase efficacy of chemotherapy, particularly in squamous cell carcinomas. Equivocal data (with some positive studies but other negative studies) suggest that NSCLC tumors with some EGFR mutations may have increased sensitivity to chemotherapy, while K-ras mutations and expression of GST-pi, RB or p27kip1 may possibly confer resistance. While limited clinical data suggest that p53 mutations are associated with resistance to platinum-based therapies in NSCLC, data on p53 IHC positivity are equivocal. To date, resistance-modulating strategies have generally not proven clinically useful in lung cancer, although small randomized trials suggest a modest benefit of verapamil and related agents in NSCLC.
Collapse
Affiliation(s)
- David J Stewart
- Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Stewart DJ. Lung Cancer Resistance to Chemotherapy. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Okumura H, Ishii H, Pichiorri F, Croce CM, Mori M, Huebner K. Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci 2009; 100:1145-50. [PMID: 19486340 PMCID: PMC11159339 DOI: 10.1111/j.1349-7006.2009.01168.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/12/2009] [Accepted: 03/15/2009] [Indexed: 10/21/2022] Open
Abstract
Though the fragile histidine triad gene product, Fhit, was discovered and characterized as a tumor suppressor 13 years ago, its sequence, structure, and cellular location did not provide clues to aid discovery of its mechanisms of suppression. Recently, using chemical cross-linkers and immunoprecipitation, a Fhit protein complex was identified that includes Hsp60 and Hsp10 which may mediate Fhit stability and mitochondrial localization, where Fhit binds and stabilizes ferredoxin reductase (Fdxr); when Fdxr is overexpressed, it can lead to production of reactive oxygen species (ROS) that induce apoptosis. Cancer cells expressing endogenous or exogenous Fhit, when exposed to H(2)O(2), an oxidative stress, produce higher levels of apoptosis-inducing ROS than matched, Fhit-negative cells; the Fhit-negative cancer cells survive, carrying DNA damage. In addition to this mitochondrial function, Fhit-overexpression in cancer cells exposed to replicative stress-inducing agents leads to enhanced caspase 3 activation and apoptosis, due to defective Chk1 activation. Thus, damage to the fragile FHIT locus leads to reduced expression of Fhit protein, and makes a two-pronged contribution to development of preneoplastic clonal expansion: (1) absence or reduction of Fhit leads to reduced expression of Fdxr and reduced ROS-induced apoptosis; (2) cells that escape ROS- or replicative stress-induced apoptosis can carry misrepaired DNA damage. The aberrant DNA damage response checkpoint in Fhit-deficient preneoplasias and cancers may make these lesions targets for inhibitors of proteins such as Parp1 and Chk1 with important roles in checkpoint responses, as observed for BRCA1-deficient cancer cells that also exhibit DNA damage repair deficiencies.
Collapse
Affiliation(s)
- Hiroshi Okumura
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
24
|
Neoplasia: the second decade. Neoplasia 2009; 10:1314-24. [PMID: 19048110 DOI: 10.1593/neo.81372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022] Open
Abstract
This issue marks the end of the 10-year anniversary of Neoplasia where we have seen exciting growth in both number of submitted and published articles in Neoplasia. Neoplasia was first published in 1999. During the past 10 years, Neoplasia has dynamically adapted to the needs of the cancer research community as technologies have advanced. Neoplasia is currently providing access to articles through PubMed Central to continue to facilitate rapid broad-based dissemination of published findings to the scientific community through an Open Access model. This has in part helped Neoplasia to achieve an improved impact factor this past year, demonstrating that the manuscripts published by Neoplasia are of great interest to the overall cancer research community. This past year, Neoplasia received a record number of articles for review and has had a 21% increase in the number of published articles.
Collapse
|
25
|
Wang J, Duan XM, Zhou ZH, He XS. Effect of exogenous FHIT gene expression on vincristine-induced apoptosis of human gastric cancer cells MKN-28. Shijie Huaren Xiaohua Zazhi 2008; 16:3367-3371. [DOI: 10.11569/wcjd.v16.i30.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate effect of exogenous fragile histidine triad (FHIT) gene expression on gastric cancer cells MKN-28 apoptosis induced by vincristine as well as its molecular mechanism.
METHODS: The recombinant FHIT gene was transfected into human gastric cancer cells MKN-28 through liposomes. The expression of exogenous FHIT gene was detected using western blot. The MKN-28-pRcCMV-FHIT, MKN-28-pRcCMV and MKN-28 cells were treated with vincristine of different concentrations. After treatment with vincristine, the inhibition rates of the cells in 3 groups were examined using MTT assay. The apoptosis of cells was determined by flow cytometry. The expressions of Bcl-2 and Bax were measured using Western blot.
RESULTS: The expression of FHIT protein was detected in MKN-28 cells after transfection with FHIT gene. After being treated with vincristine for 48 h, the apoptosis rates of the cells transfected with FHIT gene, the cells transfected with empty vector and the non-transfected cells were 30.967% ± 2.122%, 11.033% ± 1.724% and 10.733% ± 1.021%, respectively. The apoptosis of the cells transfected with FHIT gene was more obvious (F = 142.045, P < 0.05). The expression of Bcl-2 was down-regulated and that of Bax was up-regulated after treatment with vincristine.
CONCLUSION: The expression of exogenous FHIT gene can enhance the vincristine-induced apoptosis in gastric cancer cells, which may be related to the expressions of apoptosis-related protein Bcl-2 and Bax.
Collapse
|
26
|
Kim KW, Moretti L, Lu B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS One 2008; 3:e2275. [PMID: 18509530 PMCID: PMC2386548 DOI: 10.1371/journal.pone.0002275] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/17/2008] [Indexed: 11/18/2022] Open
Abstract
Background Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro. Methods and Findings M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007) compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO) mouse embryonic fibroblasts (MEF) cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment. Conclusions M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation. Clinical trials are needed to determine the potential of this combination therapy in patients with locally advanced lung cancer.
Collapse
Affiliation(s)
- Kwang Woon Kim
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Luigi Moretti
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bo Lu
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha YI, Lu B. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 2008; 4:659-68. [PMID: 18424912 DOI: 10.4161/auto.6058] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy has been reported to be increased in irradiated cancer cells resistant to various apoptotic stimuli. We therefore hypothesized that induction of autophagy via mTOR inhibition could enhance radiosensitization in apoptosis-inhibited H460 lung cancer cells in vitro and in a lung cancer xenograft model. To test this hypothesis, combinations of Z-DEVD (caspase-3 inhibitor), RAD001 (mTOR inhibitor) and irradiation were tested in cell and mouse models. The combination of Z-DEVD and RAD001 more potently radiosensitized H460 cells than individual treatment alone. The enhancement in radiation response was not only evident in clonogenic survival assays, but also was demonstrated through markedly reduced tumor growth, cellular proliferation (Ki67 staining), apoptosis (TUNEL staining) and angiogenesis (vWF staining) in vivo. Additionally, upregulation of autophagy as measured by increased GFP-LC3-tagged autophagosome formation accompanied the noted radiosensitization in vitro and in vivo. The greatest induction of autophagy and associated radiation toxicity was exhibited in the tri-modality treatment group. Autophagy marker, LC-3-II, was reduced by 3-methyladenine (3-MA), a known inhibitor of autophagy, but further increased by the addition of lysosomal protease inhibitors (pepstatin A and E64d), demonstrating that there is autophagic induction through type III PI3 kinase during the combined therapy. Knocking down of ATG5 and beclin-1, two essential autophagic molecules, resulted in radiation resistance of lung cancer cells. Our report suggests that combined inhibition of apoptosis and mTOR during radiotherapy is a potential therapeutic strategy to enhance radiation therapy in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Kwang Woon Kim
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
28
|
Neoplasia: An Anniversary of Progress. Neoplasia 2007. [DOI: 10.1593/neo.07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|