1
|
Rodrigues EG, Dobroff AS, Arruda DC, Tada DB, Paschoalin T, Polonelli L. A limitless Brazilian scientist: Professor Travassos and his contribution to cancer biology. Braz J Microbiol 2023; 54:2551-2560. [PMID: 37589929 PMCID: PMC10689629 DOI: 10.1007/s42770-023-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Luiz Rodolpho Travassos, a Brazilian scientist recognized in several areas of research, began his studies in the field of oncology in the late 1970s when he took a sabbatical at the Memorial Sloan Kettering Cancer Center, NY, USA. At that time, the discovery and characterization of human melanoma glycoprotein antigens yielded important publications. This experience allowed 16 years later, and Dr. Travassos founded UNONEX, significantly contributing with discoveries in the area of oncology and training of researchers. This review will address all the contributions of team of researchers who, together with Dr. Travassos, collaborated with investigations into molecules and processes that lead to the development of melanoma.
Collapse
Affiliation(s)
- Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center (UNMCCC), Albuquerque, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico (UNM) School of Medicine, Albuquerque, USA
| | - Denise C Arruda
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Dayane B Tada
- Laboratory of Nanomaterials and Nanotoxicology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Thaysa Paschoalin
- Department of Biophysics, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
3
|
Pourali P, Dzmitruk V, Pátek M, Neuhöferová E, Svoboda M, Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci Rep 2023; 13:4916. [PMID: 36966192 PMCID: PMC10039949 DOI: 10.1038/s41598-023-31792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Enzymotherapy based on DNase I or RNase A has often been suggested as an optional strategy for cancer treatment. The efficacy of such procedures is limited e.g. by a short half-time of the enzymes or a low rate of their internalization. The use of nanoparticles, such as gold nanoparticles (AuNPs), helps to overcome these limits. Specifically, biologically produced AuNPs represent an interesting variant here due to naturally occurring capping agents (CA) on their surface. The composition of the CA depends on the producing microorganism. CAs are responsible for the stabilization of the nanoparticles, and promote the direct linking of targeting and therapeutic molecules. This study provided proof of enzyme adsorption onto gold nanoparticles and digestion efficacy of AuNPs-adsorbed enzymes. We employed Fusarium oxysporum extract to produce AuNPs. These nanoparticles were round or polygonal with a size of about 5 nm, negative surface charge of about - 33 mV, and maximum absorption peak at 530 nm. After the adsorption of DNAse I, RNase A, or Proteinase K onto the AuNPs surface, the nanoparticles exhibited shifts in surface charge (values between - 22 and - 13 mV) and maximum absorption peak (values between 513 and 534 nm). The ability of AuNP-enzyme complexes to digest different targets was compared to enzymes alone. We found a remarkable degradation of ssDNA, and dsDNA by AuNP-DNAse I, and a modest degradation of ssRNA by AuNP-RNase A. The presence of particular enzymes on the AuNP surface was proved by liquid chromatography-mass spectrometry (LC-MS). Using SDS-PAGE electrophoresis, we detected a remarkable digestion of collagen type I and fibrinogen by AuNP-proteinase K complexes. We concluded that the biologically produced AuNPs directly bound DNase I, RNase A, and proteinase K while preserving their ability to digest specific targets. Therefore, according to our results, AuNPs can be used as effective enzyme carriers and the AuNP-enzyme conjugates can be effective tools for enzymotherapy.
Collapse
Affiliation(s)
- Parastoo Pourali
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Volha Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Eva Neuhöferová
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Milan Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Veronika Benson
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic.
| |
Collapse
|
4
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Radiosensitizing Effect of Bromelain Using Tumor Mice Model via Ki-67 and PARP-1 Inhibition. Integr Cancer Ther 2021; 20:15347354211060369. [PMID: 34825602 PMCID: PMC8649096 DOI: 10.1177/15347354211060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent reports have shown that bromelain (BL), a pineapple extract, acts as an adjuvant therapy in cancer treatment and prevention of carcinogenesis. The present study was designed to investigate the possible mechanisms by which BL could radiosensitize tumor cells in vitro and in a mouse tumor model. BL has shown a significant reduction in the viability of the radioresistant human breast carcinoma (MCF-7) cell line using cell proliferation assay. The in vivo study was designed using the Ehrlich model in female albino mice, treated with BL (6 mg/kg b. wt., intraperitoneal, once daily for 10 days) 1 hour before exposure to a fractionated dose of gamma radiation (5 Gy, 1 Gy for 5 subsequent days). The radiosensitizing effect of BL was evident in terms of a significant reduction in tumor volume, poly ADP ribose polymerase-1 (PARP-1), the proliferation marker Ki-67 and nuclear factor kappa activated B cells (NF-κB) with a significant elevation in the reactive oxygen species (ROS) content and lipid peroxidation (LPO) in tumor cells. The present findings offer a novel insight into the radiosensitizing effect of BL and its potential application in the radiotherapy course.
Collapse
Affiliation(s)
- Mai H Mekkawy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr Cancer Ther 2021; 19:1534735420950468. [PMID: 32783540 PMCID: PMC7425266 DOI: 10.1177/1534735420950468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study hypothesizes that, bromelain (BL) acts as radiosensitizer of tumor cells and that it protects normal cells from radiation effects. In vitro and in vivo studies have been carried out to prove that assumption. In vitro MTT cell proliferation assay has shown that the irradiated Ehrlich ascites carcinoma (EAC) cell line could be sensitized by BL pretreatment. In vivo: animals were randomly divided into 5 groups, Group 1: control (PBS i.p for 10 days), Group 2: Ehrlich solid tumor (EST) bearing mice, Group 3: EST + γ-radiation (fractionated dose, 1 Gy × 5), Group 4: EST + BL (6 mg/kg, i.p), daily for 10 days, Group 5: EST + BL for 10 days followed by γ-irradiation (1 Gy × 5). The size and weight of tumors in gamma-irradiated EST bearing mice treated with BL decreased significantly with a significant amelioration in the histopathological examination. Besides, BL mitigated the effect of γ-irradiation on the liver relative gene expression of poly ADP ribose polymerase-1 (PARP1), nuclear factor kappa activated B cells (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α), and it restored liver function via amelioration of paraoxonase1 (PON1) activity, reactive oxygen species (ROS) content, lipid peroxidation (LPO) and serum aspartate transaminase (AST), alanine transaminase (ALT), and albumin (ALB). It is concluded that BL can be considered as a radio-sensitizer and radio-protector, suggesting a possible role in reducing radiation exposure dose during radiotherapy.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Biochemistry Department, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, Charlier P, Kerff F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci Rep 2020; 10:19570. [PMID: 33177555 PMCID: PMC7658999 DOI: 10.1038/s41598-020-76172-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
The Ananas comosus stem extract is a complex mixture containing various cysteine proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 μM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium.
| | - Erik Maquoi
- Laboratoire de Biologie Des Tumeurs Et du Développement, GIGA-Cancer, Université de Liège, 4000, Liège, Belgium
| | - François Delbrassine
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Raphael Herman
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Nasiha M'Rabet
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Rafaèle Calvo Esposito
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Paulette Charlier
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Frédéric Kerff
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Gollo AL, Tanobe VOA, de Melo Pereira GV, Marin O, Bonatto SJR, Silva S, de Barros IR, Soccol CR. Phytochemical analysis and biological activities of in vitro cultured Nidularium procerum, a bromeliad vulnerable to extinction. Sci Rep 2020; 10:7008. [PMID: 32332902 PMCID: PMC7181841 DOI: 10.1038/s41598-020-64026-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/08/2020] [Indexed: 12/04/2022] Open
Abstract
This study reports the first phytochemical and biological characterization in treatment of adrenocortical carcinoma cells (H295R) of extracts from Nidularium procerum, an endemic bromeliad of Atlantic Forest vulnerable to extinction. Extracts of dry leaves obtained from in vitro-grown plants were recovered by different extraction methods, viz., hexanoic, ethanolic, and hot and cold aqueous. Chromatography-based metabolite profiling and chemical reaction methods revealed the presence of flavonoids, steroids, lipids, vitamins, among other antioxidant and antitumor biomolecules. Eicosanoic and tricosanoic acids, α-Tocopherol (vitamin E) and scutellarein were, for the first time, described in the Nidularium group. Ethanolic and aqueous extracts contained the highest phenolic content (107.3 mg of GAE.100 g-1) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity, respectively. The immunomodulatory and antitumoral activities of aqueous extracts were assessed using specific tests of murine macrophages modulation (RAW 264.7) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against adrenocortical carcinoma cell line, respectively. The aqueous extract improved cell adhesion and phagocytic activities and phagolysossomal formation of murine macrophages. This constitutes new data on the Bromeliaceae family, which should be better exploited to the production of new phytomedicines for pharmacological uses.
Collapse
Affiliation(s)
- André Luiz Gollo
- Department of Engineering and Biotechnology, Federal University of Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Valcineide O A Tanobe
- Department of Chemistry. Centro Universitario de Ciencias Exactas e Ingenierías - CUCEI. C.P.44430. Guadalajara University, Guadalajara, Jalisco, Mexico
| | | | - Oranys Marin
- Department of Engineering and Biotechnology, Federal University of Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | | | - Suzany Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe and Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Ivan Ricardo de Barros
- Postgraduate Program in Chemical Engineering, Federal University of Paraná, P.O. Box 19001, Centro Politécnico, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Engineering and Biotechnology, Federal University of Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil.
| |
Collapse
|
8
|
Couto GK, Segatto NV, Oliveira TL, Seixas FK, Schachtschneider KM, Collares T. The Melding of Drug Screening Platforms for Melanoma. Front Oncol 2019; 9:512. [PMID: 31293965 PMCID: PMC6601395 DOI: 10.3389/fonc.2019.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The global incidence of cancer is rising rapidly and continues to be one of the leading causes of death in the world. Melanoma deserves special attention since it represents one of the fastest growing types of cancer, with advanced metastatic forms presenting high mortality rates due to the development of drug resistance. The aim of this review is to evaluate how the screening of drugs and compounds for melanoma has been performed over the last seven decades. Thus, we performed literature searches to identify melanoma drug screening methods commonly used by research groups during this timeframe. In vitro and in vivo tests are essential for the development of new drugs; however, incorporation of in silico analyses increases the possibility of finding more suitable candidates for subsequent tests. In silico techniques, such as molecular docking, represent an important and necessary first step in the screening process. However, these techniques have not been widely used by research groups to date. Our research has shown that the vast majority of research groups still perform in vitro and in vivo tests, with emphasis on the use of in vitro enzymatic tests on melanoma cell lines such as SKMEL and in vivo tests using the B16 mouse model. We believe that the union of these three approaches (in silico, in vitro, and in vivo) is essential for improving the discovery and development of new molecules with potential antimelanoma action. This workflow would provide greater confidence and safety for preclinical trials, which will translate to more successful clinical trials and improve the translatability of new melanoma treatments into clinical practice while minimizing the unnecessary use of laboratory animals under the principles of the 3R's.
Collapse
Affiliation(s)
- Gabriela Klein Couto
- Research Group in Molecular and Cellular Oncology, Postgraduate Program in Biochemistry and Bioprospecting, Cancer Biotechnology Laboratory, Center for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Natália Vieira Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
9
|
Cysteine Proteases from V. cundinamarcensis ( C. candamarcensis) Inhibit Melanoma Metastasis and Modulate Expression of Proteins Related to Proliferation, Migration and Differentiation. Int J Mol Sci 2018; 19:ijms19102846. [PMID: 30241282 PMCID: PMC6212992 DOI: 10.3390/ijms19102846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies showed that P1G10, a proteolytic fraction from Vasconcellea cundinamarcensis latex, reduced the tumor mass in animals bearing melanoma, increased in vitro DNA fragmentation and decreased cell adhesion. Here, we present some molecular and cellular events related to the antimetastatic effect induced by the CMS-2 fraction derived from P1G10 in metastatic melanoma B16-F10 and melanocyte Melan-a. Using difference gel electrophoresis and mass spectrometry, we identified four proteins overexpressed in tumor cells, all of them related to proliferation, survival, migration and cell invasion, that had their expression normalized upon treatment with CMS-2: nucleophosmin 1, heat shock protein 65, calcyclin binding protein and eukaryotic translation initiation factor 4H. In addition, some antioxidant and glycolytic enzymes show increased expression after exposure to CMS-2, along with an induction of melanogenesis (differentiation marker). The down regulation of cofilin 1, a protein involved in cell motility, may explain the inhibition of cell migration and dendritic-like outgrowth in B16-F10 and Melan-a, observed after CMS-2 treatment. Taken together, it is argued that CMS-2 modulates the expression of proteins related to metastatic development, driving the cell to a more differentiated-like state. These effects support the CMS-2 antimetastatic activity and place this fraction in the category of anticancer agent.
Collapse
|
10
|
Chinnadurai GS, Krishnan S, Perumal P. Studies on detection and analysis of proteases in leaf extract of medicinally important plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:176-188. [PMID: 29496170 DOI: 10.1016/j.phymed.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 11/30/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. AIM OF THE STUDY Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. METHODS Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. RESULTS Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants could serve as excellent sources of proteases which could be exploited for various industrial, food and pharmaceutical applications.
Collapse
Affiliation(s)
- Gandhi Shree Chinnadurai
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Sivakumar Krishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Palani Perumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India.
| |
Collapse
|
11
|
Balakireva AV, Kuznetsova NV, Petushkova AI, Savvateeva LV, Zamyatnin AA. Trends and Prospects of Plant Proteases in Therapeutics. Curr Med Chem 2017; 26:465-486. [PMID: 29173148 DOI: 10.2174/0929867325666171123204403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The main function of proteases in any living organism is the cleavage of proteins resulting in the degradation of damaged, misfolded and potentially harmful proteins and therefore providing the cell with amino acids essential for the synthesis of new proteins. Besides this main function, proteases may play an important role as signal molecules and participate in numerous protein cascades to maintain the vital processes of an organism. Plant proteases are no exception to this rule. Moreover, in contrast to humanencoded enzymes, many plant proteases possess exceptional features such as higher stability, unique substrate specificity and a wide pH range for enzymatic activity. These valuable features make plant-derived proteolytic enzymes suitable for many biomedical applications, and furthermore, the plants can serve as factories for protein production. Plant proteases are already applied in the treatment of several pathological conditions in the human organism. Some of the enzymes possess antitumour, antibacterial and antifungal activity. The collagenolytic activity of plant proteases determines important medical applications such as the healing of wounds and burn debridement. Plant proteases may affect blood coagulation processes and can be applied in the treatment of digestive disorders. The present review summarizes recent advances and possible applications for plant proteases in biomedicine, and proposes further development of plant-derived proteolytic enzymes in the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Natalia V Kuznetsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | | | - Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russian Federation
| |
Collapse
|
12
|
Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int Immunopharmacol 2017; 50:291-304. [DOI: 10.1016/j.intimp.2017.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
|
13
|
São Paulo Barretto Miranda ÍK, Fontes Suzart Miranda A, Souza FVD, Vannier-Santos MA, Pirovani CP, Pepe IM, Rodowanski IJ, Ferreira KTDSE, Mendes Souza Vaz L, de Assis SA. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells. Int J Food Sci Nutr 2016; 68:442-454. [PMID: 27855525 DOI: 10.1080/09637486.2016.1254599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current study aims to extract bromelain from different parts (stem, crown, peels, pulp and leaves) of Ananas comosus var. comosus AGB 772; to determine of optimum pH and temperature; to test bromelain stability in disodium EDTA and sodium benzoate, and to investigate its pharmacological activity on B16F10 murine melanoma cells in vitro. The highest enzymatic activity was found in bromelain extracted from the pulp and peel. The optimum bromelain pH among all studied pineapple parts was 6.0. The optimum temperature was above 50 °C in all bromelain extracts. The fluorescence analysis confirmed the stability of bromelain in the presence of EDTA and sodium benzoate. Bromelain was pharmacologically active against B16F10 melanoma cells and it was possible verifying approximately 100% inhibition of tumor cell proliferation in vitro. Since bromelain activity was found in different parts of pineapple plants, pineapple residues from the food industry may be used for bromelain extraction.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Priminho Pirovani
- d Biological Sciences Department , Biotechnology and Genetics Center, State University of Santa Cruz , Ilhéus , Brazil
| | - Iuri Muniz Pepe
- e Laboratory of Optical Properties, Physics Department , Federal University of Bahia , Salvador , Brazil
| | - Ivanoé João Rodowanski
- e Laboratory of Optical Properties, Physics Department , Federal University of Bahia , Salvador , Brazil
| | | | - Luciano Mendes Souza Vaz
- f Technology, Sanitation, Hydric Resources and Environment Department , State University of Feira de Santana (UEFS) , Feira de Santana , Brazil
| | | |
Collapse
|
14
|
Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 2016; 5:283-288. [PMID: 27602208 PMCID: PMC4998156 DOI: 10.3892/br.2016.720] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.
Collapse
Affiliation(s)
- Vidhya Rathnavelu
- Department of Oral Pathology and Microbiology, Faculty of Dental Science, Sri Ramachandra University, Chennai, Tamilnadu 600116, India
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Subramaniam Sohila
- Department of Physics, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu 637215, India
| | - Samikannu Kanagesan
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Rajendran Ramesh
- Department of Physics, Periyar University, Salem, Tamilnadu 636011, India
| |
Collapse
|
15
|
Pereira FV, Melo ACL, de Melo FM, Mourão-Sá D, Silva P, Berzaghi R, Herbozo CCA, Coelho-Dos-Reis J, Scutti JA, Origassa CST, Pereira RM, Juliano L, Juliano MA, Carmona AK, Câmara NOS, Tsuji M, Travassos LR, Rodrigues EG. TLR4-mediated immunomodulatory properties of the bacterial metalloprotease arazyme in preclinical tumor models. Oncoimmunology 2016; 5:e1178420. [PMID: 27622031 DOI: 10.1080/2162402x.2016.1178420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 02/09/2023] Open
Abstract
Despite the recent approval of new agents for metastatic melanoma, its treatment remains challenging. Moreover, few available immunotherapies induce a strong cellular immune response, and selection of the correct immunoadjuvant is crucial for overcoming this obstacle. Here, we studied the immunomodulatory properties of arazyme, a bacterial metalloprotease, which was previously shown to control metastasis in a murine melanoma B16F10-Nex2 model. The antitumor activity of arazyme was independent of its proteolytic activity, since heat-inactivated protease showed comparable properties to the active enzyme; however, the effect was dependent on an intact immune system, as antitumor properties were lost in immunodeficient mice. The protective response was IFNγ-dependent, and CD8(+) T lymphocytes were the main effector antitumor population, although B and CD4(+) T lymphocytes were also induced. Macrophages and dendritic cells were involved in the induction of the antitumor response, as arazyme activation of these cells increased both the expression of surface activation markers and proinflammatory cytokine secretion through TLR4-MyD88-TRIF-dependent, but also MAPK-dependent pathways. Arazyme was also effective in the murine breast adenocarcinoma 4T1 model, reducing primary and metastatic tumor development, and prolonging survival. To our knowledge, this is the first report of a bacterial metalloprotease interaction with TLR4 and subsequent receptor activation that promotes a proinflammatory and tumor protective response. Our results show that arazyme has immunomodulatory properties, and could be a promising novel alternative for metastatic melanoma treatment.
Collapse
Affiliation(s)
- Felipe V Pereira
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Department of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo (USP), São Paulo, Brazil; HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center (ADARC), Rockefeller University, NY, USA
| | - Amanda C L Melo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Department of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Filipe M de Melo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Diego Mourão-Sá
- Immunobiology Laboratory, Cancer Research UK, London Research Institute , London, UK
| | - Priscila Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Rodrigo Berzaghi
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Carolina C A Herbozo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Jordana Coelho-Dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center (ADARC), Rockefeller University, NY, USA; Rene Rachou Research Center, Oswaldo Cruz Foundation, FIOCRUZ, Minas Gerais, Brazil
| | - Jorge A Scutti
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Clarice S T Origassa
- Department of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo (USP) , São Paulo, Brazil
| | - Rosana M Pereira
- Department of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo (USP) , São Paulo, Brazil
| | - Luis Juliano
- Department of Biophysics, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo (USP) , São Paulo, Brazil
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center (ADARC), Rockefeller University , NY, USA
| | - Luiz R Travassos
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| |
Collapse
|
16
|
Trejo-Becerril C, Pérez-Cardenas E, Gutiérrez-Díaz B, De La Cruz-Sigüenza D, Taja-Chayeb L, González-Ballesteros M, García-López P, Chanona J, Dueñas-González A. Antitumor Effects of Systemic DNAse I and Proteases in an In Vivo Model. Integr Cancer Ther 2016; 15:NP35-NP43. [PMID: 27146129 PMCID: PMC5739158 DOI: 10.1177/1534735416631102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 01/11/2016] [Accepted: 01/16/2016] [Indexed: 12/17/2022] Open
Abstract
Background. Cell-free DNA circulates in cancer patients and induces in vivo cell transformation and cancer progression in susceptible cells. Based on this, we hypothesized that depletion of circulating DNA with DNAse I and a protease mix could have antitumor effects. Study design. The study aimed to demonstrate that DNAse I and a protease mix can degrade in vitro DNA and proteins from the serum of healthy individuals and cancer patients, and in vivo in serum of Wistar rats,. Moreover, the antitumor effect of the systemically administered enzyme mix treatmentwas evaluated in nude mice subcutaneously grafted with the human colon cancer cell line SW480. Results. The serum DNA of cancer patients or healthy individuals was almost completely degraded in vitro by the enzymatic treatment, but no degradation was found with the enzymes given separately. The intravenous administration of the enzymes led to significant decreases in DNA and proteins from rat serum. No antitumor effect was observed in immunodeficient mice treated with the enzymes given separately. In contrast, the animals that received both enzymes exhibited a marked growth inhibition of tumors, 40% of them having pathological complete response. Conclusion. This study demonstrated that systemic treatment with DNAse I and a protease mix in rats decreases DNA and proteins from serum and that this treatment has antitumor effects. Our results support the hypothesis that circulating DNA could have a role in tumor progression, which can be offset by depleting it. Further studies are needed to prove this concept.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José Chanona
- Instituto Nacional de Cancerología, México City, Mexico
| | - Alfonso Dueñas-González
- Instituto Nacional de Cancerología, México City, Mexico .,Instituto de InvestigacionesBiomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Cancerología, México City, Mexico
| |
Collapse
|
17
|
MÜLLER ALENA, BARAT SAMARPITA, CHEN XI, BUI KHACCUONG, BOZKO PRZEMYSLAW, MALEK NISARP, PLENTZ RUBENR. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int J Oncol 2016; 48:2025-34. [DOI: 10.3892/ijo.2016.3411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 11/05/2022] Open
|
18
|
Dittz D, Figueiredo C, Lemos FO, Viana CTR, Andrade SP, Souza-Fagundes EM, Fujiwara RT, Salas CE, Lopes MTP. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of Proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1. Int J Mol Sci 2015; 16:7027-44. [PMID: 25826531 PMCID: PMC4425002 DOI: 10.3390/ijms16047027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/05/2023] Open
Abstract
The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.
Collapse
Affiliation(s)
- Dalton Dittz
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Cinthia Figueiredo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Fernanda O. Lemos
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Celso T. R. Viana
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Silvia P. Andrade
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Elaine M. Souza-Fagundes
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mail:
| | - Carlos E. Salas
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-31-3409-2646
| | - Miriam T. P. Lopes
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| |
Collapse
|
19
|
Mahmood R. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain. Prep Biochem Biotechnol 2015; 46:161-4. [PMID: 25569629 DOI: 10.1080/10826068.2014.996232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle.
Collapse
Affiliation(s)
- Rubab Mahmood
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , India
| |
Collapse
|
20
|
Pereira FV, Ferreira-Guimarães CA, Paschoalin T, Scutti JAB, Melo FM, Silva LS, Melo ACL, Silva P, Tiago M, Matsuo AL, Juliano L, Juliano MA, Carmona AK, Travassos LR, Rodrigues EG. A natural bacterial-derived product, the metalloprotease arazyme, inhibits metastatic murine melanoma by inducing MMP-8 cross-reactive antibodies. PLoS One 2014; 9:e96141. [PMID: 24788523 PMCID: PMC4005744 DOI: 10.1371/journal.pone.0096141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/04/2014] [Indexed: 11/23/2022] Open
Abstract
The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.
Collapse
Affiliation(s)
- Felipe V. Pereira
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla A. Ferreira-Guimarães
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Jorge A. B. Scutti
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Filipe M. Melo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis S. Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda C. L. Melo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Priscila Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Manoela Tiago
- School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson L. Matsuo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics, EPM-UNIFESP, São Paulo, Brazil
| | | | | | - Luiz R. Travassos
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elaine G. Rodrigues
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Pillai K, Akhter J, Chua TC, Morris DL. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Invest 2013; 31:241-50. [PMID: 23570457 DOI: 10.3109/07357907.2013.784777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bromelain is a mixture of proteolytic enzymes that is capable of hydrolyzing glycosidic linkages in glycoprotein. Glycoprotein's are ubiquitously distributed throughout the body and serve a variety of physiologic functions. Faulty glycosylation of proteins may lead to cancer. Antitumor properties of bromelain have been demonstrated in both, in vitro and in vivo studies, along with scanty anecdotal human studies. Various mechanistic pathways have been proposed to explain the anticancer properties of bromelain. However, proteolysis by bromelain has been suggested as a main pathway by some researchers. MUC1 is a glycoprotein that provides tumor cells with invasive, metastatic, and chemo-resistant properties. To date, there is no study that examines the effect of bromelain on MUC1. However, the viability of MUC1 expressing pancreatic and breast cancer cells are adversely affected by bromelain. Further, the efficacy of cisplatin and 5-FU are enhanced by adjuvant treatment with bromelain, indicating that the barrier function of MUC1 may be affected. Other studies have also indicated that there is a greater accumulation of 5-FU in the cell compartment on treatment with 5-FU and bromelain. Malignant peritoneal mesothelioma (MPM) expresses MUC1 and initial studies have shown that the viability of MPM cells is adversely affected by exposure to bromelain. Further, bromelain in combination with either 5-FU or cisplatin, the efficacy of the chemotherapeutic drug is enhanced. Hence, current evidence indicates that bromelain may have the potential of being developed into an effective anticancer agent for MPM.
Collapse
Affiliation(s)
- Krishna Pillai
- Department of Surgery, University of New South Wales, St. George Hospital, Kogarah, NSW, Australia
| | | | | | | |
Collapse
|
22
|
Mahajan S, Chandra V, Dave S, Nanduri R, Gupta P. Stem Bromelain–Induced Macrophage Apoptosis and Activation Curtail Mycobacterium tuberculosis Persistence. J Infect Dis 2012; 206:366-76. [DOI: 10.1093/infdis/jis354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. Production of plant proteases in vivo and in vitro--a review. Biotechnol Adv 2011; 29:983-96. [PMID: 21889977 DOI: 10.1016/j.biotechadv.2011.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
Abstract
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.
Collapse
|
24
|
|
25
|
Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Borin Scutti JA, Massaoka MH, Travassos LR, Sartorelli P, Lago JH. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun 2011; 411:449-54. [DOI: 10.1016/j.bbrc.2011.06.176] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/11/2022]
|
26
|
Matsuo AL, Tanaka AS, Juliano MA, Rodrigues EG, Travassos LR. A novel melanoma-targeting peptide screened by phage display exhibits antitumor activity. J Mol Med (Berl) 2010; 88:1255-64. [DOI: 10.1007/s00109-010-0671-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/22/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
27
|
Oliveira JS, Costa-Lotufo LV, Bezerra DP, Alencar NMN, Marinho-Filho JDB, Figueiredo IST, Moraes MO, Pessoa C, Alves APNN, Ramos MV. In vivo growth inhibition of sarcoma 180 by latex proteins from Calotropis procera. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:139-49. [PMID: 20517595 DOI: 10.1007/s00210-010-0525-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
Latex of Calotropis procera has been described as a relevant source of pharmacologically active proteins, including proteins with anticancer activity. A previous in vitro study of laticifer proteins (LP) from C. procera reported that they had selective cytotoxic effects on human cancer cell lines. The aim of this study was to determine the effects of LP in vivo using mice transplanted with sarcoma 180. Biochemical, hematological, histopathological, and morphological analyses were performed in animals given LP by oral or intraperitoneal routes. LP significantly reduced tumor growth (51.83%) and augmented the survival time of animals for up to 4 days. Tumor growth inhibitory activity was lost when LP fraction was submitted to proteolysis, acidic treatment, or pretreated with iodoacetamide. However, LP retained its inhibitory activities on sarcoma 180 growth after heat treatment. Thus, it seems that heat-stable proteins are involved in tumor suppression. Biochemical parameters, such as the enzymatic activity of aspartate aminotransferase and alanine aminotransferase and urea content in serum were not affected in treated mice. It is worth noting that LP completely eliminated the 5-FU-induced depletion of leukocytes in mice even when given orally. The active proteins were recovered in a single fraction by ion exchange chromatography and still exhibited anticancer activity. This study confirms the pharmacological potential of proteins from the latex of C. procera to control sarcoma cell proliferation.
Collapse
Affiliation(s)
- Jefferson S Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6033, 60.451-970, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|
29
|
Chobotova K, Vernallis AB, Majid FAA. Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett 2009; 290:148-56. [PMID: 19700238 DOI: 10.1016/j.canlet.2009.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 01/11/2023]
Abstract
The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.
Collapse
|
30
|
Neoplasia: the second decade. Neoplasia 2009; 10:1314-24. [PMID: 19048110 DOI: 10.1593/neo.81372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022] Open
Abstract
This issue marks the end of the 10-year anniversary of Neoplasia where we have seen exciting growth in both number of submitted and published articles in Neoplasia. Neoplasia was first published in 1999. During the past 10 years, Neoplasia has dynamically adapted to the needs of the cancer research community as technologies have advanced. Neoplasia is currently providing access to articles through PubMed Central to continue to facilitate rapid broad-based dissemination of published findings to the scientific community through an Open Access model. This has in part helped Neoplasia to achieve an improved impact factor this past year, demonstrating that the manuscripts published by Neoplasia are of great interest to the overall cancer research community. This past year, Neoplasia received a record number of articles for review and has had a 21% increase in the number of published articles.
Collapse
|
31
|
Resistance to cytarabine induces the up-regulation of NKG2D ligands and enhances natural killer cell lysis of leukemic cells. Neoplasia 2009; 10:1402-10. [PMID: 19048119 DOI: 10.1593/neo.08972] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/18/2022] Open
Abstract
Prolonged treatment of leukemic cells with chemotherapeutic agents frequently results in development of drug resistance. Moreover, selection of drug-resistant cell populations may be associated with changes in malignant properties such as proliferation rate, invasiveness, and immunogenicity. In the present study, the sensitivity of cytarabine (1-beta-D-arabinofuranosylcytosine, araC)-resistant and parental human leukemic cell lines (T-lymphoid H9 and acute T-lymphoblastic leukemia Molt-4) to natural killer (NK) cell-mediated killing was investigated. The results obtained demonstrate that araC-resistant H9 and Molt-4 (H9(r)ARAC(100) and Molt-4(r)ARAC(100)) cell lines are more sensitive to NK cell-mediated lysis than their respective parental cell lines. This increased sensitivity was associated with a higher surface expression of ligands for the NK cell-activating receptor NKG2D, notably UL16 binding protein-2 (ULBP-2) and ULBP-3 in H9(r)ARAC(100) and Molt-4(r)ARAC(100) cell lines. Blocking ULBP-2 and ULBP-3 or NKG2D with monoclonal antibody completely abrogated NK cell lysis. Constitutive phosphorylated extracellular signal-regulated kinase (ERK) but not pAKT was higher in araC-resistant cells than in parental cell lines. Inhibition of ERK using ERK inhibitor PD98059 decreased both ULBP-2/ULBP-3 expression and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in H9 parental cells resulted in increased ULBP-2/ULBP-3 expression and enhanced NK cell lysis. These results demonstrate that increased sensitivity of araC-resistant leukemic cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway.
Collapse
|
32
|
Salas CE, Gomes MTR, Hernandez M, Lopes MTP. Plant cysteine proteinases: evaluation of the pharmacological activity. PHYTOCHEMISTRY 2008; 69:2263-9. [PMID: 18614189 DOI: 10.1016/j.phytochem.2008.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
Cysteine proteinases are involved in virtually every aspect of plant physiology and development. They play a role in development, senescence, programmed cell death, storage and mobilization of germinal proteins, and in response to various types of environmental stress. In this review, we focus on a group of plant defensive enzymes occurring in germinal tissue of Caricaceae. These enzymes elicit a protective response in the unripe fruit after physical stress. We propose that these enzymes follow a strategy similar to mammalian serine proteinases involved in blood clotting and wound healing. We show evidence for the pharmacological role of plant cysteine proteinases in mammalian wound healing, immunomodulation, digestive conditions, and neoplastic alterations.
Collapse
Affiliation(s)
- Carlos E Salas
- Departamentos de Bioquímica e Imunologia, Farmacologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte 31270-901, Brazil.
| | | | | | | |
Collapse
|
33
|
Neoplasia: An Anniversary of Progress. Neoplasia 2007. [DOI: 10.1593/neo.07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|