1
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
2
|
Asante DB, Mohan GRKA, Acheampong E, Ziman M, Calapre L, Meniawy TM, Gray ES, Beasley AB. Genetic analysis of heterogeneous subsets of circulating tumour cells from high grade serous ovarian carcinoma patients. Sci Rep 2023; 13:2552. [PMID: 36781954 PMCID: PMC9925814 DOI: 10.1038/s41598-023-29416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Circulating tumour cells (CTCs) are heterogenous and contain genetic information from the tumour of origin. They bear specific intra- and extra-cellular protein markers aiding in their detection. However, since these markers may be shared with other rare cells in the blood, only genetic testing can confirm their malignancy. Herein, we analyse different CTC subsets using single cell whole genome DNA sequencing to validate their malignant origin. We randomly selected putative CTCs identified by immunostaining that were isolated from 4 patients with high grade serous ovarian cancer (HGSOC) and one with benign cystadenoma. We specifically targeted CTCs positive for epithelial (CK/EpCAMpos), mesenchymal (vimentinpos), and pseudoendothelial (CK/EpCAMpos plus CD31pos) markers. We isolated these cells and performed whole genome amplification (WGA) and low-pass whole-genome sequencing (LP-WGS) for analysis of copy number alterations (CNA). Of the CK/EpCAMpos cells analysed from the HGSOC patients, 2 of 3 cells showed diverse chromosomal CNAs. However, the 4 pseudoendothelial cells (CK/EpCAMpos plus CD31pos) observed in the HGSOC cases did not carry any CNA. Lastly, two of the clusters of vimentin positive cells sequenced from those found in the benign cystadenoma case had CNA. Despite the low number of cells analysed, our results underscore the importance of genetic analysis of putative CTCs to confirm their neoplastic origin. In particular, it highlights the presence of a population of CK/EpCAMpos cells that are not tumour cells in patients with HGSOC, which otherwise would be counted as CTCs.
Collapse
Affiliation(s)
- Du-Bois Asante
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | | | - Emmanuel Acheampong
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Tarek M Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
- School of Medicine, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| |
Collapse
|
3
|
Ma G, Jiang Y, Liang M, Li J, Wang J, Mao X, Veeramootoo JS, Xia T, Liu X, Wang S. Dynamic monitoring of CD45-/CD31+/DAPI+ circulating endothelial cells aneuploid for chromosome 8 during neoadjuvant chemotherapy in locally advanced breast cancer. Ther Adv Med Oncol 2020; 12:1758835920918470. [PMID: 32489429 PMCID: PMC7238307 DOI: 10.1177/1758835920918470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NCT) is the standard treatment for patients with
locally advanced breast cancer (LABC). The aim of this study was to verify
this relationship, and to estimate the clinical value of aneuploid
circulating endothelial cells (CECs) in LABC patients with different NCT
responses. Methods: Breast cancer patients received an EC4-T4 NCT regimen. Peripheral blood
mononuclear cells were obtained before NCT, and after the first and last NCT
courses. A novel subtraction enrichment and immunostaining fluorescence
in situ hybridization (SE-iFISH) strategy was applied
for detection of circulating rare cells (CRCs). CECs (CD45–/CD31+/DAPI+) and
circulating tumor cells (CTCs) with different cytogenetic abnormalities
related to chromosome 8 aneuploidy were analyzed in LABC patients subjected
to NCT. Results: A total of 41 patients were enrolled. Firstly, CD31+/EpCAM+ aneuploid
endothelial-epithelial fusion cells were observed in LABC patients. Further,
aneuploid CECs in the peripheral blood showed a biphasic response during
NCT, as they initially increased and then decreased, whereas a strong
positive correlation was observed between aneuploid CECs and CTC
numbers. Conclusion: We determined that aneuploid CEC dynamics vary in patients with different
response to chemotherapy. Elucidating the potential cross-talk between CTCs
and aneuploid CECs may help characterize the process associated with the
development of chemotherapy resistance and metastasis.
Collapse
Affiliation(s)
- Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Mengdi Liang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - JiaYing Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jingyi Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xinrui Mao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
4
|
De Biasi S, Gibellini L, Feletti A, Pavesi G, Bianchini E, Lo Tartaro D, Pecorini S, De Gaetano A, Pullano R, Boraldi F, Nasi M, Pinti M, Cossarizza A. High speed flow cytometry allows the detection of circulating endothelial cells in hemangioblastoma patients. Methods 2018; 134-135:3-10. [DOI: 10.1016/j.ymeth.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
|
5
|
Danova M, Comolli G, Manzoni M, Torchio M, Mazzini G. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: A critical evaluation. Mol Clin Oncol 2016; 4:909-917. [PMID: 27284422 DOI: 10.3892/mco.2016.823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Malignant tumors are characterized by uncontrolled cell growth and metastatic spread, with a pivotal importance of the phenomenon of angiogenesis. For this reason, research has focused on the development of agents targeting the vascular component of the tumor microenvironment and regulating the angiogenic switch. As a result, the therapeutic inhibition of angiogenesis has become an important component of anticancer treatment, however, its utility is partly limited by the lack of an established methodology to assess its efficacy in vivo. Circulating endothelial cells (CECs), which are rare in healthy subjects and significantly increased in different tumor types, represent a promising tool for monitoring the tumor clinical outcome and the treatment response. A cell population circulating into the blood also able to form endothelial colonies in vitro and to promote vasculogenesis is represented by endothelial progenitor cells (EPCs). The number of both of these cell types is extremely low and they cannot be identified using a single marker, therefore, in absence of a definite consensus on their phenotype, require discrimination using combinations of antigens. Multiparameter flow cytometry (FCM) is ideal for rapid processing of high numbers of cells per second and is commonly utilized to quantify CECs and EPCs, however, remains technically challenging since there is as yet no standardized protocol for the identification and enumeration of these rare events. Methodology in studies on CECs and/or EPCs as clinical biomarkers in oncology is heterogeneous and data have been obtained from different studies leading to conflicting conclusions. The present review presented a critical review of the issues that limit the comparability of results of the most significant studies employing FCM for CEC and/or EPC detection in patients with cancer.
Collapse
Affiliation(s)
- Marco Danova
- Internal Medicine and Medical Oncology, Vigevano Hospital, ASST Pavia, I-27029 Vigevano, Italy
| | - Giuditta Comolli
- Microbiology and Virology, Biotechnology Laboratories, IRCCS San Matteo Foundation, I-27100 Pavia, Italy
| | | | - Martina Torchio
- Internal Medicine and Medical Oncology, Vigevano Hospital, ASST Pavia, I-27029 Vigevano, Italy
| | - Giuliano Mazzini
- Molecular Genetics Institute, National Research Council and Biology and Biotechnology Department 'L. Spallanzani', University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
6
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
7
|
Idriss NK, Blann AD, Sayed DM, Gaber MA, Hassen HA, Kishk YT. Circulating Endothelial Cells and Platelet Microparticles in Mitral Valve Disease With and Without Atrial Fibrillation. Angiology 2014; 66:631-7. [PMID: 25115553 DOI: 10.1177/0003319714546183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypercoagulability in mitral valve disease (MVD), a cause of atrial fibrillation (AF) and stroke, is potentially due to endothelial damage/dysfunction (marked by circulating endothelial cells [CECs]), platelet activation (soluble P-selectin [sPsel], platelet microparticles [PMPs], and soluble CD40 [sCD40]), and oxidized low-density lipoprotein (oxLDL) cholesterol. We measured these variables in 24 patients with MVD as well as in 21 with MVD + AF and compared them with 20 healthy controls (HCs). The CECs and PMPs were measured by flow cytometry; sPsel, oxLDL, and CD40 by enzyme-linked immunosorbent assay. Compared with HCs, sPsel and PMPs were equally higher in MVD and MVD + AF; sCD40 and oxLDL were higher in MVD + AF than in HCs and MVD; and CECs were higher in MVD than in the HCs, with further increases in MVD + AF (all P < .001). We conclude that excess platelet activation is present in MVD regardless of AF, and that increased endothelial damage in MVD is greater when compounded by AF.
Collapse
Affiliation(s)
- Naglaa K Idriss
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew D Blann
- Department of Medicine City Hospital, University of Birmingham Centre for Cardiovascular Sciences, Birmingham, United Kingdom
| | - Douaa M Sayed
- Department of Clinical Pathology, Faculty of Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Marwa A Gaber
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hosny A Hassen
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yehia Taha Kishk
- Department of Cardiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Moiseev IS, Babenko EV, Sipol AA, Vavilov VN, Afanasyev BV. Measurement of circulating endothelial cells to support the diagnosis of veno-occlusive disease after hematopoietic stem cell transplantation. Int J Lab Hematol 2013; 36:e27-9. [DOI: 10.1111/ijlh.12137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. S. Moiseev
- R.M. Gorbacheva Memorial Institute of Children Hematology and Transplantation; State Medical University named I.P. Pavlov; Saint-Petersburg Russia
| | - E. V. Babenko
- R.M. Gorbacheva Memorial Institute of Children Hematology and Transplantation; State Medical University named I.P. Pavlov; Saint-Petersburg Russia
| | - A. A. Sipol
- R.M. Gorbacheva Memorial Institute of Children Hematology and Transplantation; State Medical University named I.P. Pavlov; Saint-Petersburg Russia
| | - V. N. Vavilov
- R.M. Gorbacheva Memorial Institute of Children Hematology and Transplantation; State Medical University named I.P. Pavlov; Saint-Petersburg Russia
| | - B. V. Afanasyev
- R.M. Gorbacheva Memorial Institute of Children Hematology and Transplantation; State Medical University named I.P. Pavlov; Saint-Petersburg Russia
| |
Collapse
|
9
|
Yu HK, Lee HJ, Choi HN, Ahn JH, Choi JY, Song HS, Lee KH, Yoon Y, Yi LSH, Kim JS, Kim SJ, Kim TJ. Characterization of CD45-/CD31+/CD105+ circulating cells in the peripheral blood of patients with gynecologic malignancies. Clin Cancer Res 2013; 19:5340-50. [PMID: 23922300 DOI: 10.1158/1078-0432.ccr-12-3685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Circulating endothelial cells (CEC) have been widely used as a prognostic biomarker and regarded as a promising strategy for monitoring the response to treatment in several cancers. However, the presence and biologic roles of CECs have remained controversial for decades because technical standards for the identification and quantification of CECs have not been established. Here, we hypothesized that CECs detected by flow cytometry might be monocytes rather than endothelial cells. EXPERIMENTAL DESIGN The frequency of representative CEC subsets (i.e., CD45(-)/CD31(+), CD45(-)/CD31(+)/CD146(+), CD45(-)/CD31(+)/CD105(+)) was analyzed in the peripheral blood of patients with gynecologic cancer (n = 56) and healthy volunteers (n = 44). CD45(-)/CD31(+) cells, which are components of CECs, were isolated and the expression of various markers (CD146, CD105, vWF, and CD144 for endothelial cells; CD68 and CD14 for monocytes) was examined by immunocytochemistry. RESULTS CD45(-)/CD31(+)/CD105(+) cells were significantly increased in the peripheral blood of patients with cancer, whereas evaluation of CD45(-)/CD31(+)/CD146(+) cells was not possible both in patients with cancer and healthy controls due to the limited resolution of the flow cytometry. Immunocytochemistry analyses showed that these CD45(-)/CD31(+)/CD105(+) cells did not express vWF and CD146 but rather CD144. Furthermore, CD45(-)/CD31(+)/CD105(+) cells uniformly expressed the monocyte-specific markers CD14 and CD68. These results suggest that CD45(-)/CD31(+)/CD105(+) cells carry the characteristics of monocytes rather than endothelial cells. CONCLUSIONS Our data indicate that CD45(-)/CD31(+)/CD105(+) circulating cells, which are significantly increased in the peripheral blood of patients with gynecologic cancer, are monocytes rather than endothelial cells. Further investigation is required to determine the biologic significance of their presence and function in relation with angiogenesis.
Collapse
Affiliation(s)
- Hyun-Kyung Yu
- Authors' Affiliations: Mogam Biotechnology Research Institute, Yongin; Department of Biological Science, Sungkyunkwan University, Suwon; Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul; Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
11
|
Wang J, Xiao J, Wei X, Wang L, Lin L, Liu Z, Wang X, Sun B, Li K. Circulating endothelial cells and tumor blood volume as predictors in lung cancer. Cancer Sci 2013; 104:445-52. [PMID: 23298271 DOI: 10.1111/cas.12097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022] Open
Abstract
The current criteria for evaluating antiangiogenic efficacy is insufficient as tumor shrinkage occurs after blood perfusion decreases. Tumor blood volume (BV) in computed tomography perfusion imaging and circulating endothelial cells (CEC) might predict the status of angiogenesis. The present study aimed to validate their representation as feasible predictors in non-small-cell lung carcinoma (NSCLC). A total of 74 patients was categorized randomly into two arms undergoing regimens of vinorelbine and cisplatin (Navelbine and platinum [NP]) with rh-endostatin or single NP. The response rate, perfusion imaging indexes and activated CEC (aCEC) during treatment were recorded. Progression-free survival (PFS) was determined through follow up. Correlations among the above indicators, response and PFS were analyzed: aCEC increased significantly in cases of progressive disease after single NP chemotherapy (P = 0.024). Tumor BV decreased significantly in cases with a clinical benefit in the combined arm (P = 0.026), whereas inverse correlations existed between ∆aCEC (post-therapeutic value minus the pre-therapeutic value) and PFS (P = 0.005) and between ∆BV and PFS (P = 0.044); a positive correlation existed between ∆aCEC and ∆BV. Therefore, both aCEC and tumor BV can serve as predictors, and detection of both indicators can help evaluate the chemo-antiangiogenic efficacy in NSCLC more accurately.
Collapse
Affiliation(s)
- Jing Wang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The association of blood angioregulatory microRNA levels with circulating endothelial cells and angiogenic proteins in patients receiving dacarbazine and interferon. J Transl Med 2012; 10:241. [PMID: 23217102 PMCID: PMC3573971 DOI: 10.1186/1479-5876-10-241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/07/2012] [Indexed: 12/19/2022] Open
Abstract
Background Blood biomarkers are needed to monitor anti-angiogenic treatments for cancer. The association of blood levels of microRNAs (miRs) implicated in angiogenesis with circulating endothelial cells (CEC) and with angiogenic proteins was examined in patients administered drugs with anti-angiogenic activity. Methods Blood was collected from patients with uveal melanoma enrolled on an adjuvant therapy trial in which they were treated sequentially with dacarbazine and interferon-alfa-2b. Plasma levels of nine angioregulatory miRs, miR-16, 20a, 106a, 125b, 126, 146a, 155, 199a, and 221, were determined by quantitative real time polymerase chain reaction; CEC, by semi-automated immunomagnetic; and plasma angiogenic proteins, by enzyme linked immunosorbent assays. Results Levels of miR-199a were positively correlated and miR-106a negatively correlated with CEC pre-therapy. Decreases in miR-126 and miR-199a and increases in miR-16 and miR-106a were observed after interferon-alfa-2b, but not after dacarbazine. CEC also increased after treatment with interferon but not after treatment with dacarbazine. Levels of miRs did not correlate with levels of vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. Angiogenic proteins also did not change significantly with treatment. Conclusions Blood levels of specific angioregulatory miRs are associated with CEC, and changes in specific angioregulatory miRs parallel increases in CEC after treatment with interferon-alfa-2b. Blood levels of specific angioregulatory miRs are not associated with levels of angiogenic proteins. miRs warrant further evaluation as blood biomarkers of angiogenesis.
Collapse
|
13
|
Kondo S, Ueno H, Hashimoto J, Morizane C, Koizumi F, Okusaka T, Tamura K. Circulating endothelial cells and other angiogenesis factors in pancreatic carcinoma patients receiving gemcitabine chemotherapy. BMC Cancer 2012; 12:268. [PMID: 22731825 PMCID: PMC3437212 DOI: 10.1186/1471-2407-12-268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Background Pancreatic carcinoma is a significant cause of cancer-related death in developed countries. As the level of circulating endothelial cells (CECs) is known to increase in response to various cancers, we investigated the predictive potential of CEC levels and the association of these levels with the expression of proangiogenic factors in pancreatic carcinoma patients. Methods Pancreatic carcinoma patients receiving gemcitabine chemotherapy were prospectively assigned to this study. CEC levels were measured using the CellTracks system, and the plasma levels of several angiogenesis factors were measured using multiplex immunoassay. Associations between clinical outcomes and the levels of these factors were evaluated. Results Baseline CEC levels were markedly higher in pancreatic carcinoma patients (n = 37) than in healthy volunteers (n = 53). Moreover, these high CEC levels were associated with decreased overall survival (median, 297 days versus 143 days, P < 0.001) and progression-free survival (median, 150 days versus 64 days, P = 0.008), as well as with high vascular endothelial growth factor, interleukin (IL)-8, and IL-10 expression in the pancreatic carcinoma patients. Conclusions Several chemokines and proangiogenic factors correlate with the release of CECs, and the number of CECs detected may be a useful prognostic marker in pancreatic carcinoma patients undergoing gemcitabine chemotherapy. Trial registration UMIN000002323
Collapse
Affiliation(s)
- Shunsuke Kondo
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|