1
|
Khurshid S, Venkataramany AS, Montes M, Kipp JF, Roberts RD, Wein N, Rigo F, Wang PY, Cripe TP, Chandler DS. Employing splice-switching oligonucleotides and AAVrh74.U7 snRNA to target insulin receptor splicing and cancer hallmarks in osteosarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200908. [PMID: 39720325 PMCID: PMC11666956 DOI: 10.1016/j.omton.2024.200908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor (IR) to the proliferative IR-A isoform. Here, we leverage splice-switching oligonucleotides (SSOs) to mitigate IR splicing toward the IR-B isoform. We show that SSOs can modulate cancer cell hallmarks and anoikis-resistant growth. Furthermore, we engineered the SSO sequence in an U7 snRNA packaged in an adeno-associated virus (AAV) to test the feasibility of viral vector-mediated gene therapy delivery. We noted modest increases in IR-B isoform levels after virus transduction, which prompted us to investigate the role of combinatorial treatments with dalotuzumab, an anti-IGF-1R monoclonal antibody. After observing additive impacts on phosphoprotein phosphorylation and anoikis-resistant growth with the dalotuzumab and SSO combination, we treated OS cells with dalotuzumab and the AAVrh74.U7 snRNA IR virus, which significantly slowed OS cell proliferation. While these viruses require further optimization, we highlight the potential for SSO therapy and viral vector delivery, as it may offer new treatment avenues for OS patients and be translated to other cancers.
Collapse
Affiliation(s)
- Safiya Khurshid
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Akila S. Venkataramany
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matias Montes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - John F. Kipp
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Nicolas Wein
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Dawn S. Chandler
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Liu J, Yang J, Pan Q, Wang X, Wang X, Chen H, Zheng X, Huang Q. MDM4 was associated with poor prognosis and tumor-immune infiltration of cancers. Eur J Med Res 2024; 29:79. [PMID: 38281029 PMCID: PMC10821240 DOI: 10.1186/s40001-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
MDM4 is one of the MDM protein family and is generally recognized as the key negative regulator of p53. As a cancer-promoting factor, it plays a non-negligible role in tumorigenesis and development. In this article, we analyzed the expression levels of MDM4 in pan-cancer through multiple databases. We also investigated the correlations between MDM4 expression and prognostic value, immune features, genetic mutation, and tumor-related pathways. We found that MDM4 overexpression is often accompanied by adverse clinical features, poor prognosis, oncogenic mutations, tumor-immune infiltration and aberrant activation of oncogenic signaling pathways. We also conducted transcriptomic sequencing to investigate the effect of MDM4 on transcript levels in colon cancer and performed qPCR to verify this. Finally, we carried out some in vitro experiments including colony formation assay, chemoresistance and senescence-associated β-galactosidase activity assay to study the anti-tumor treatment effect of small molecule MDM4 inhibitor, NSC146109. Our research confirmed that MDM4 is a prognostic biomarker and potential therapeutic target for a variety of malignancies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Jie Yang
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Xinyin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoling Zheng
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- The Graduate School of Fujian Medical University, Fuzhou, China.
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
MDM4: What do we know about the association between its polymorphisms and cancer? MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:61. [PMID: 36566308 DOI: 10.1007/s12032-022-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Collapse
|
4
|
Venkataramany AS, Schieffer KM, Lee K, Cottrell CE, Wang PY, Mardis ER, Cripe TP, Chandler DS. Alternative RNA Splicing Defects in Pediatric Cancers: New Insights in Tumorigenesis and Potential Therapeutic Vulnerabilities. Ann Oncol 2022; 33:578-592. [PMID: 35339647 DOI: 10.1016/j.annonc.2022.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Compared to adult cancers, pediatric cancers are uniquely characterized by a genomically stable landscape and lower tumor mutational burden. However, alternative splicing, a global cellular process that produces different mRNA/protein isoforms from a single mRNA transcript, has been increasingly implicated in the development of pediatric cancers. DESIGN We review the current literature on the role of alternative splicing in adult cancer, cancer predisposition syndromes, and pediatric cancers. We also describe multiple splice variants identified in adult cancers and confirmed through comprehensive genomic profiling in our institutional cohort of rare, refractory and relapsed pediatric and adolescent young adult cancer patients. Finally, we summarize the contributions of alternative splicing events to neoantigens and chemoresistance and prospects for splicing-based therapies. RESULTS Published dysregulated splicing events can be categorized as exon inclusion, exon exclusion, splicing factor upregulation, or splice site alterations. We observe these phenomena in cancer predisposition syndromes (Lynch syndrome, Li-Fraumeni syndrome, CHEK2) and pediatric leukemia (B-ALL), sarcomas (Ewing sarcoma, rhabdomyosarcoma, osteosarcoma), retinoblastoma, Wilms tumor, and neuroblastoma. Within our institutional cohort, we demonstrate splice variants in key regulatory genes (CHEK2, TP53, PIK3R1, MDM2, KDM6A, NF1) that resulted in exon exclusion or splice site alterations, which were predicted to impact functional protein expression and promote tumorigenesis. Differentially spliced isoforms and splicing proteins also impact neoantigen creation and treatment resistance, such as imatinib or glucocorticoid regimens. Additionally, splice-altering strategies with the potential to change the therapeutic landscape of pediatric cancers include antisense oligonucleotides, adeno-associated virus gene transfers, and small molecule inhibitors. CONCLUSIONS Alternative splicing plays a critical role in the formation and growth of pediatric cancers, and our institutional cohort confirms and highlights the broad spectrum of affected genes in a variety of cancers. Further studies that elucidate the mechanisms of disease-inducing splicing events will contribute toward the development of novel therapeutics.
Collapse
Affiliation(s)
- A S Venkataramany
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States; Medical Scientist Training Program, The Ohio State University, Columbus, Ohio, United States
| | - K M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - K Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - C E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - P Y Wang
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - E R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - T P Cripe
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States; Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - D S Chandler
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States; Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
5
|
Khurshid S, Montes M, Comiskey DF, Shane B, Matsa E, Jung F, Brown C, Bid HK, Wang R, Houghton PJ, Roberts R, Rigo F, Chandler D. Splice-switching of the insulin receptor pre-mRNA alleviates tumorigenic hallmarks in rhabdomyosarcoma. NPJ Precis Oncol 2022; 6:1. [PMID: 35017650 PMCID: PMC8752779 DOI: 10.1038/s41698-021-00245-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric tumor with a poor prognosis for metastasis and recurrent disease. Large-scale sequencing endeavors demonstrate that Rhabdomyosarcomas have a dearth of precisely targetable driver mutations. However, IGF-2 signaling is known to be grossly altered in RMS. The insulin receptor (IR) exists in two alternatively spliced isoforms, IR-A and IR-B. The IGF-2 signaling molecule binds both its innate IGF-1 receptor as well as the insulin receptor variant A (IR-A) with high affinity. Mitogenic and proliferative signaling via the canonical IGF-2 pathway is, therefore, augmented by IR-A. This study shows that RMS patients express increased IR-A levels compared to control tissues that predominantly express the IR-B isoform. We also found that Hif-1α is significantly increased in RMS tumors, portraying their hypoxic phenotype. Concordantly, the alternative splicing of IR adapts to produce more IR-A in response to hypoxic stress. Upon examining the pre-mRNA structure of the gene, we identified a potential hypoxia-responsive element, which is also the binding site for the RNA-binding protein CUG-BP1 (CELF1). We designed Splice Switching Oligonucleotides (SSO) against this binding site to decrease IR-A levels in RMS cell lines and, consequently, rescue the IR-B expression levels. SSO treatment resulted in a significant reduction in cell proliferation, migration, and angiogenesis. Our data shows promising insight into how impeding the IGF-2 pathway by reducing IR-A expression mitigates tumor growth. It is evident that Rhabdomyosarcomas use IR alternative splicing as yet another survival strategy that can be exploited as a therapeutic intervention in conjunction with already established anti-IGF-1 receptor therapies.
Collapse
Affiliation(s)
- Safiya Khurshid
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Matias Montes
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Daniel F Comiskey
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Brianne Shane
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Eleftheria Matsa
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Francesca Jung
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Chelsea Brown
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | | | - Ruoning Wang
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter J Houghton
- Greenhey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Ryan Roberts
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Dawn Chandler
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
6
|
Kim JY, Lee R, Xiao G, Forbes D, Bargonetti J. MDM2-C Functions as an E3 Ubiquitin Ligase. Cancer Manag Res 2020; 12:7715-7724. [PMID: 32904724 PMCID: PMC7457725 DOI: 10.2147/cmar.s260943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mouse double minute 2 (MDM2) is an E3 ubiquitin ligase that is over-expressed in many cancers and regulates target proteins through ubiquitination. Full-length MDM2 (MDM2-FL) is best known for targeting wild-type p53 for degradation by the proteasome, but the functions of the many splice variants of MDM2 are under-explored. The three well-studied alternative MDM2 isoforms are MDM2-A/ALT2, MDM2-B/ALT1, and MDM2-C/ALT3. MDM2-A and MDM2-B are capable of down-regulating MDM2-FL activity and have transforming activity in cancers with mutant p53. The MDM2 isoform MDM2-C is over-expressed in breast cancer and correlates with decreased survival in the context of mutant p53 expression. Therefore, MDM2-C requires further study to determine if it has biochemical activities similar to MDM2-FL. Hypothesis: We hypothesized that like MDM2-FL, the MDM2-C isoform (lacking exons 5–9 and containing a full C-terminal RING finger sequence) would maintain E3 ubiquitin ligase activity. Materials and Methods In order to explore the biochemical function of MDM2-C, we used an in vitro ubiquitination assay and a glutaraldehyde cross-linking assay. Results Here we report, for the first time, that MDM2-C has E3 auto-ubiquitin ligase activity, which can promote ubiquitination of wild-type p53 and mutant p53 R273H, and also can form a protein–protein interaction with p53 proteins. Conclusion This information strongly positions MDM2-C as a protein with biochemical activities that may explain the varied outcomes observed in patients with high-level expression of MDM2-C in the presence of wild-type p53 versus mutant p53.
Collapse
Affiliation(s)
- Jun Yeob Kim
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Rusia Lee
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA.,Biology PhD Program, The Graduate Center of Biology, City University of New York, New York, NY, USA
| | - Gu Xiao
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Dominique Forbes
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA.,Biology PhD Program, The Graduate Center of Biology, City University of New York, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
7
|
Mdm2 and MdmX RING Domains Play Distinct Roles in the Regulation of p53 Responses: A Comparative Study of Mdm2 and MdmX RING Domains in U2OS Cells. Int J Mol Sci 2020; 21:ijms21041309. [PMID: 32075226 PMCID: PMC7072982 DOI: 10.3390/ijms21041309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Dysfunction of the tumor suppressor p53 occurs in most human cancers. Mdm2 and MdmX are homologous proteins from the Mdm (Murine Double Minute) protein family, which play a critical role in p53 inactivation and degradation. The two proteins interact with one another via the intrinsic RING (Really Interesting New Gene) domains to achieve the negative regulation of p53. The downregulation of p53 is accomplished by Mdm2-mediated p53 ubiquitination and proteasomal degradation through the ubiquitin proteolytic system and by Mdm2 and MdmX mediated inhibition of p53 transactivation. To investigate the role of the RING domain of Mdm2 and MdmX, an analysis of the distinct functionalities of individual RING domains of the Mdm proteins on p53 regulation was conducted in human osteosarcoma (U2OS) cell line. Mdm2 RING domain was observed mainly localized in the cell nucleus, contrasting the localization of MdmX RING domain in the cytoplasm. Mdm2 RING was found to possess an endogenous E3 ligase activity, whereas MdmX RING did not. Both Mdm2 and MdmX RING domains were able to dimerize with endogenous full-length Mdm2 and MdmX protein and affect their cellular function. The results showed that overexpression of the Mdm2 or MdmX RING domains interfered with the endogenous full-length Mdm2 and MdmX activity and resulted in p53 stabilization and p53 target gene activation. However, both Mdm RING domains showed oncogenic activity in a colony formation assay, suggesting that the Mdm RING domains possess p53-independent oncogenic properties. This study highlights the distinct structural and functional traits of the RING domain of Mdm2 and MdmX and characterized their role in cellular responses through interfering with p53 dependent signaling pathway.
Collapse
|
8
|
Hong W, Zhang W, Guan R, Liang Y, Hu S, Ji Y, Liu M, Lu H, Yu M, Ma L. Genome-wide profiling of prognosis-related alternative splicing signatures in sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:557. [PMID: 31807538 PMCID: PMC6861818 DOI: 10.21037/atm.2019.09.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sarcomas (SARCs) are rare malignant tumors with poor prognosis. Increasing evidence has suggested that aberrant alternative splicing (AS) is strongly associated with tumor initiation and progression. We considered whether survival-related AS events might serve as prognosis predictors and underlying targeted molecules in SARC treatment. METHODS RNA-Seq data of the SARC cohort were downloaded from The Cancer Genome Atlas (TCGA) database. Survival-related AS events were selected by univariate and multivariate Cox regression analyses. Metascape was used for constructing a gene interaction network and performing functional enrichment analysis. Then, prognosis predictors were established based on statistically significant survival-related AS events and evaluated by receiver operator characteristic (ROC) curve analysis. Finally, the potential regulatory network was analyzed via Pearson's correlation between survival-related AS events and splicing factors (SFs). RESULTS A total of 3,610 AS events and 2,291 genes were found to be prognosis-related in 261 SARC samples. The focal adhesion pathway was identified as the most critical molecular mechanism corresponding to poor prognosis. Notably, several prognosis predictors based on survival-related AS events showed excellent performance in prognosis prediction. The area under the curve of the ROC of the risk score was 0.85 in the integrated predictor. The splicing network proved complicated regulation between prognosis-related SFs and AS events. Also, driver gene mutations were significantly associated with AS in SARC patients. CONCLUSIONS Survival-related AS events may become ideal indictors for the prognosis prediction of SARCs. Corresponding splicing regulatory mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weicong Zhang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yuying Liang
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yayun Ji
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Mouyuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hai Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
9
|
Yang X, Huang WT, He RQ, Ma J, Lin P, Xie ZC, Ma FC, Chen G. Determining the prognostic significance of alternative splicing events in soft tissue sarcoma using data from The Cancer Genome Atlas. J Transl Med 2019; 17:283. [PMID: 31443718 PMCID: PMC6708253 DOI: 10.1186/s12967-019-2029-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Surgery, adjuvant chemotherapy, and radiotherapy are the primary treatment options for soft tissue sarcomas (STSs). However, identifying ways to improve the prognosis of patients with STS remains a considerable challenge. Evidence shows that the dysregulation of alternative splicing (AS) events is involved in tumor pathogenesis and progression. The present study objective was to identify survival-associated AS events that could serve as prognostic biomarkers and potentially serve as tumor-selective STS drug targets. METHODS STS-specific 'percent spliced in' (PSI) values for splicing events in 206 STS samples were downloaded from The Cancer Genome Atlas SpliceSeq® database. Prognostic analyses were performed on seven types of AS events to determine their prognostic value in STS patients, for which prediction models were constructed with the risk score formula [Formula: see text]. Prediction models were also constructed to determine the prognostic value of AS events, and Spearman's rank correlation coefficients were calculated to determine the degree of correlation between splicing factor expression and the PSI values. RESULTS A total 10,439 events were found to significantly correlate with patient survival rates. The area under the time-dependent receiver operating characteristic curve for the prognostic predictor of STS overall survival was 0.826. Notably, the splicing events of certain STS key genes were significantly associated with STS 2-year overall survival in the present study, including exon skip (ES) events in MDM2 and EWSR1, alternate terminator events in CDKN2A and HMGA2 for dedifferentiated liposarcoma, ES in MDM2 and alternate promoter events in CDKN2A for leiomyosarcoma, and ES in EWSR1 for undifferentiated pleomorphic sarcoma. Moreover, splicing correlation networks between AS events and splicing factors revealed that almost all of the AS events showed negatively correlations with the expression of splicing factors. CONCLUSION An in-depth analysis of alternative RNA splicing could provide new insights into the mechanisms of STS oncogenesis and the potential for novel approaches to this type of cancer therapy.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Ting Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Cheng Xie
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
10
|
Saadatzadeh MR, Elmi AN, Pandya PH, Bijangi-Vishehsaraei K, Ding J, Stamatkin CW, Cohen-Gadol AA, Pollok KE. The Role of MDM2 in Promoting Genome Stability versus Instability. Int J Mol Sci 2017; 18:ijms18102216. [PMID: 29065514 PMCID: PMC5666895 DOI: 10.3390/ijms18102216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
In cancer, the mouse double minute 2 (MDM2) is an oncoprotein that contributes to the promotion of cell growth, survival, invasion, and therapeutic resistance. The impact of MDM2 on cell survival versus cell death is complex and dependent on levels of MDM2 isoforms, p53 status, and cellular context. Extensive investigations have demonstrated that MDM2 protein–protein interactions with p53 and other p53 family members (p63 and p73) block their ability to function as transcription factors that regulate cell growth and survival. Upon genotoxic insults, a dynamic and intricately regulated DNA damage response circuitry is activated leading to release of p53 from MDM2 and activation of cell cycle arrest. What ensues following DNA damage, depends on the extent of DNA damage and if the cell has sufficient DNA repair capacity. The well-known auto-regulatory loop between p53-MDM2 provides an additional layer of control as the cell either repairs DNA damage and survives (i.e., MDM2 re-engages with p53), or undergoes cell death (i.e., MDM2 does not re-engage p53). Furthermore, the decision to live or die is also influenced by chromatin-localized MDM2 which directly interacts with the Mre11-Rad50-Nbs1 complex and inhibits DNA damage-sensing giving rise to the potential for increased genome instability and cellular transformation.
Collapse
Affiliation(s)
- M Reza Saadatzadeh
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| | - Adily N Elmi
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pankita H Pandya
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
| | | | - Jixin Ding
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| | - Christopher W Stamatkin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| | | | - Karen E Pollok
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| |
Collapse
|
11
|
Comiskey DF, Jacob AG, Sanford BL, Montes M, Goodwin AK, Steiner H, Matsa E, Tapia-Santos AS, Bebee TW, Grieves J, La Perle K, Boyaka P, Chandler DS. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene 2017; 37:95-106. [PMID: 28892044 PMCID: PMC5756115 DOI: 10.1038/onc.2017.282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022]
Abstract
Alternative splicing of the oncogene murine double minute 2 (MDM2) is induced in response to genotoxic stress. MDM2-ALT1, the major splice variant generated, is known to activate the p53 pathway and impede full-length MDM2's negative regulation of p53. Despite this perceptible tumor-suppressive role, MDM2-ALT1 is also associated with several cancers. Furthermore, expression of MDM2-ALT1 has been observed in aggressive metastatic disease in pediatric rhabdomyosarcoma (RMS), irrespective of histological subtype. Therefore, we generated a transgenic MDM2-ALT1 mouse model that would allow us to investigate the effects of this splice variant on the progression of tumorigenesis. Here we show that when MDM2-ALT1 is ubiquitously expressed in p53 null mice it leads to increased incidence of spindle cell sarcomas, including RMS. Our data provide evidence that constitutive MDM2-ALT1 expression is itself an oncogenic lesion that aggravates the tumorigenesis induced by p53 loss. On the contrary, when MDM2-ALT1 is expressed solely in B-cells in the presence of homozygous wild-type p53 it leads to significantly increased lymphomagenesis (56%) when compared with control mice (27%). However, this phenotype is observable only at later stages in life (⩾18 months). Moreover, flow cytometric analyses for B-cell markers revealed an MDM2-ALT1-associated decrease in the B-cell population of the spleens of these animals. Our data suggest that the B-cell loss is p53 dependent and is a response mounted to persistent MDM2-ALT1 expression in a wild-type p53 background. Overall, our findings highlight the importance of an MDM2 splice variant as a critical modifier of both p53-dependent and -independent tumorigenesis, underscoring the complexity of MDM2 posttranscriptional regulation in cancer. Furthermore, MDM2-ALT1-expressing p53 null mice represent a novel mouse model of fusion-negative RMS.
Collapse
Affiliation(s)
- D F Comiskey
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A G Jacob
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - B L Sanford
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - M Montes
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A K Goodwin
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - H Steiner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - E Matsa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - A S Tapia-Santos
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - T W Bebee
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J Grieves
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.,Takeda California, Inc., Drug Safety Research & Evaluation 10410 Science Center Drive, San Diego, CA 92121, USA
| | - K La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - P Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - D S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
12
|
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. J Mol Biol 2017; 429:1595-1606. [PMID: 28390900 PMCID: PMC5663274 DOI: 10.1016/j.jmb.2017.03.030] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Tumor suppressor p53 plays a central role in tumor suppression. p53 is the most frequently mutated gene in human cancer, and over half of human cancers contain p53 mutations. Majority of p53 mutations in cancer are missense mutations, leading to the expression of full-length mutant p53 (mutp53) protein. While the critical role of wild-type p53 in tumor suppression has been firmly established, mounting evidence has demonstrated that many tumor-associated mutp53 proteins not only lose the tumor-suppressive function of wild-type p53 but also gain new activities to promote tumorigenesis independently of wild-type p53, termed gain-of-function. Mutant p53 protein often accumulates to very high levels in tumors, contributing to malignant progression. Recently, mutp53 has become an attractive target for cancer therapy. Further understanding of the mechanisms underlying mutp53 protein accumulation and gain-of-function will accelerate the development of targeted therapies for human cancer harboring mutp53. In this review, we summarize the recent advances in the studies on mutp53 protein accumulation and gain-of-function and targeted therapies for mutp53 in human cancer.
Collapse
Affiliation(s)
- Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Zheng
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
13
|
Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression. Oncol Lett 2016; 12:1737-1744. [PMID: 27602108 PMCID: PMC4998349 DOI: 10.3892/ol.2016.4858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/21/2015] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase (SYK) has been reported as a potential tumor suppressor in colorectal cancer (CRC). However, the role of alternative splicing of SYK in carcinogenesis remains unclear. In the present study, SYK isoforms were overexpressed in the human CRC HCT 116 cell line using lentiviral expression vectors to investigate the biological functions of full length SYK [SYK(L)] and short form SYK [SYK(S)] in CRC. Real-time cellular analysis and the 5-ethynyl-2-deoxyuridine assay were used to detect the effects of SYK(L) and SYK(S) on cell proliferation. Cell cycle progression and migration were assessed via flow cytometry and Transwell assays, respectively. The results revealed that the recombinant lentivirus with SYK(L) overexpression significantly suppressed the proliferation and metastasis of CRC cells, while SYK(S) overexpression did not. In addition, MTS assays demonstrated that SYK(L) and SYK(S) increased the cellular sensitivity to 5-fluorouracil (5-FU), suggesting that SYK(L) and 5-FU produce a significant synergistic effect on CRC cell proliferation, while SYK(S) has an effect on modulating CRC 5-FU sensitivity. Furthermore, quantitative polymerase chain reaction results revealed that SYK(L) was downregulated in 69% of 26 pairs of CRC and adjacent non-cancerous tissues, whereas SYK(S) exhibited no significant differences between tumor and normal tissues. Overall, the present data provides evidence that SYK(L) is a tumor suppressor in CRC, and both SYK(L) and SYK(S) may serve as important predictors in the chemotherapeutic treatment of CRC.
Collapse
|
14
|
Inoue K, Fry EA. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer. Int J Cancer 2016; 139:33-41. [PMID: 26802432 PMCID: PMC5047959 DOI: 10.1002/ijc.30003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022]
Abstract
Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
15
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
16
|
Comiskey DF, Jacob AG, Singh RK, Tapia-Santos AS, Chandler DS. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage. Nucleic Acids Res 2015; 43:4202-18. [PMID: 25845590 PMCID: PMC4417157 DOI: 10.1093/nar/gkv223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Genotoxic stress induces alternative splicing of the oncogene MDM2 generating MDM2-ALT1, an isoform attributed with tumorigenic properties. However, the mechanisms underlying this event remain unclear. Here we explore MDM2 splicing regulation by utilizing a novel minigene that mimics endogenous MDM2 splicing in response to UV and cisplatinum-induced DNA damage. We report that exon 11 is necessary and sufficient for the damage-specific alternative splicing of the MDM2 minigene and that the splicing factor SRSF1 binds exon 11 at evolutionarily conserved sites. Interestingly, mutations disrupting this interaction proved sufficient to abolish the stress-induced alternative splicing of the MDM2 minigene. Furthermore, SRSF1 overexpression promoted exclusion of exon 11, while its siRNA-mediated knockdown prevented the stress-induced alternative splicing of endogenous MDM2. Additionally, we observed elevated SRSF1 levels under stress and in tumors correlating with the expression of MDM2-ALT1. Notably, we demonstrate that MDM2-ALT1 splicing can be blocked by targeting SRSF1 sites on exon 11 using antisense oligonucleotides. These results present conclusive evidence supporting a negative role for SRSF1 in MDM2 alternative splicing. Importantly, we define for the first time, a clear-cut mechanism for the regulation of damage-induced MDM2 splicing and present potential strategies for manipulating MDM2 expression via splicing modulation.
Collapse
Affiliation(s)
- Daniel F Comiskey
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Aishwarya G Jacob
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Ravi K Singh
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Aixa S Tapia-Santos
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| | - Dawn S Chandler
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, 700 Childrens Drive WA5023, Columbus, OH 43205, USA
| |
Collapse
|
17
|
Zhang M, Zhu B, Davie J. Alternative splicing of MEF2C pre-mRNA controls its activity in normal myogenesis and promotes tumorigenicity in rhabdomyosarcoma cells. J Biol Chem 2014; 290:310-24. [PMID: 25404735 DOI: 10.1074/jbc.m114.606277] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Many cellular disruptions contribute to the progression of this pediatric cancer, including aberrant alternative splicing. The MEF2 family of transcription factors regulates many developmental programs, including myogenesis. MEF2 gene transcripts are subject to alternate splicing to generate protein isoforms with divergent functions. We found that MEF2Cα1 was the ubiquitously expressed isoform that exhibited no myogenic activity and that MEF2Cα2, the muscle-specific MEF2C isoform, was required for efficient differentiation. We showed that exon α in MEF2C was aberrantly alternatively spliced in RMS cells, with the ratio of α2/α1 highly down-regulated in RMS cells compared with normal myoblasts. Compared with MEF2Cα2, MEF2Cα1 interacted more strongly with and recruited HDAC5 to myogenic gene promoters to repress muscle-specific genes. Overexpression of the MEF2Cα2 isoform in RMS cells increased myogenic activity and promoted differentiation in RMS cells. We also identified a serine protein kinase, SRPK3, that was down-regulated in RMS cells and found that expression of SRPK3 promoted the splicing of the MEF2Cα2 isoform and induced differentiation. Restoration of either MEF2Cα2 or SPRK3 inhibited both proliferation and anchorage-independent growth of RMS cells. Together, our findings indicate that the alternative splicing of MEF2C plays an important role in normal myogenesis and RMS development. An improved understanding of alternative splicing events in RMS cells will potentially reveal novel therapeutic targets for RMS treatment.
Collapse
Affiliation(s)
- Meiling Zhang
- From the Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Bo Zhu
- From the Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Judith Davie
- From the Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
18
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
19
|
Jacob AG, Singh RK, Comiskey DF, Rouhier MF, Mohammad F, Bebee TW, Chandler DS. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS One 2014; 9:e104444. [PMID: 25105592 PMCID: PMC4126728 DOI: 10.1371/journal.pone.0104444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023] Open
Abstract
MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain the RING domain that facilitates dimerization of the full-length MDM proteins. Concordantly, MDM2-ALT1 has been shown to lead to the stabilization of p53 through its interaction with and inactivation of full-length MDM2. The impact of MDM2-ALT1 expression on the p53 pathway and the nature of its interaction with MDMX remain unclear. Also, the role of the architecturally similar MDMX-ALT2 and its influence of the MDM2-MDMX-p53 axis are yet to be elucidated. We show here that MDM2-ALT1 is capable of binding full-length MDMX as well as full-length MDM2. Additionally, we demonstrate that MDMX-ALT2 is able to dimerize with both full-length MDMX and MDM2 and that the expression of MDM2-ALT1 and MDMX-ALT2 leads to the upregulation of p53 protein, and also of its downstream target p21. Moreover, MDM2-ALT1 expression causes cell cycle arrest in the G1 phase in a p53 and p21 dependent manner, which is consistent with the increased levels of p21. Finally we present evidence that MDM2-ALT1 and MDMX-ALT2 expression can activate subtly distinct subsets of p53-transcriptional targets implying that these splice variants can modulate the p53 tumor suppressor pathway in unique ways. In summary, our study shows that the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-ALT2 are important modifiers of the p53 pathway and present a potential mechanism to tailor the p53-mediated cellular stress response.
Collapse
Affiliation(s)
- Aishwarya G. Jacob
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ravi K. Singh
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel F. Comiskey
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew F. Rouhier
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Fuad Mohammad
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas W. Bebee
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
| | - Dawn S. Chandler
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Jacob AG, Singh RK, Mohammad F, Bebee TW, Chandler DS. The splicing factor FUBP1 is required for the efficient splicing of oncogene MDM2 pre-mRNA. J Biol Chem 2014; 289:17350-64. [PMID: 24798327 DOI: 10.1074/jbc.m114.554717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the oncogene MDM2 is a phenomenon that occurs in cells in response to genotoxic stress and is also a hallmark of several cancer types with important implications in carcinogenesis. However, the mechanisms regulating this splicing event remain unclear. Previously, we uncovered the importance of intron 11 in MDM2 that affects the splicing of a damage-responsive MDM2 minigene. Here, we have identified discrete cis regulatory elements within intron 11 and report the binding of FUBP1 (Far Upstream element-Binding Protein 1) to these elements and the role it plays in MDM2 splicing. Best known for its oncogenic role as a transcription factor in the context of c-MYC, FUBP1 was recently described as a splicing regulator with splicing repressive functions. In the case of MDM2, we describe FUBP1 as a positive splicing regulatory factor. We observed that blocking the function of FUBP1 in in vitro splicing reactions caused a decrease in splicing efficiency of the introns of the MDM2 minigene. Moreover, knockdown of FUBP1 in cells induced the formation of MDM2-ALT1, a stress-induced splice variant of MDM2, even under normal conditions. These results indicate that FUBP1 is also a strong positive splicing regulator that facilitates efficient splicing of the MDM2 pre-mRNA by binding its introns. These findings are the first report describing the regulation of alternative splicing of MDM2 mediated by the oncogenic factor FUBP1.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Ravi K Singh
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and
| | - Fuad Mohammad
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Thomas W Bebee
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and
| | - Dawn S Chandler
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|