1
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
2
|
Rodrigues EG, Dobroff AS, Arruda DC, Tada DB, Paschoalin T, Polonelli L. A limitless Brazilian scientist: Professor Travassos and his contribution to cancer biology. Braz J Microbiol 2023; 54:2551-2560. [PMID: 37589929 PMCID: PMC10689629 DOI: 10.1007/s42770-023-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Luiz Rodolpho Travassos, a Brazilian scientist recognized in several areas of research, began his studies in the field of oncology in the late 1970s when he took a sabbatical at the Memorial Sloan Kettering Cancer Center, NY, USA. At that time, the discovery and characterization of human melanoma glycoprotein antigens yielded important publications. This experience allowed 16 years later, and Dr. Travassos founded UNONEX, significantly contributing with discoveries in the area of oncology and training of researchers. This review will address all the contributions of team of researchers who, together with Dr. Travassos, collaborated with investigations into molecules and processes that lead to the development of melanoma.
Collapse
Affiliation(s)
- Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center (UNMCCC), Albuquerque, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico (UNM) School of Medicine, Albuquerque, USA
| | - Denise C Arruda
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Dayane B Tada
- Laboratory of Nanomaterials and Nanotoxicology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Thaysa Paschoalin
- Department of Biophysics, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Ryu JY, Oh J, Kim SM, Kim WG, Jeong H, Ahn SA, Kim SH, Jang JY, Yoo BC, Kim CW, Lee CE. SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells. BMB Rep 2022. [PMID: 35321782 PMCID: PMC9058468 DOI: 10.5483/bmbrep.2022.55.4.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in color-ectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data col-lectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.
Collapse
Affiliation(s)
- Ji-Yoon Ryu
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Jiyoung Oh
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Su-Min Kim
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Won-Gi Kim
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
- Colorectal Cancer Branch, Research Center, National Cancer Institute, Goyang 10408, Korea
| | - Hana Jeong
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Shin-Ae Ahn
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Seol-Hee Kim
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji-Young Jang
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Bioinfra Life Science Inc, Seoul 03127, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Center, National Cancer Institute, Goyang 10408, Korea
| | - Chul Woo Kim
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Bioinfra Life Science Inc, Seoul 03127, Korea
| | - Choong-Eun Lee
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Ryu JY, Oh J, Kim SM, Kim WG, Jeong H, Ahn SA, Kim SH, Jang JY, Yoo BC, Kim CW, Lee CE. SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells. BMB Rep 2022; 55:198-203. [PMID: 35321782 PMCID: PMC9058468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 09/17/2023] Open
Abstract
As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels. [BMB Reports 2022; 55(4): 198-203].
Collapse
Affiliation(s)
- Ji-Yoon Ryu
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Jiyoung Oh
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Su-Min Kim
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Won-Gi Kim
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
- Colorectal Cancer Branch, Research Center, National Cancer Institute, Goyang 10408, Korea
| | - Hana Jeong
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Shin-Ae Ahn
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Seol-Hee Kim
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji-Young Jang
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Bioinfra Life Science Inc, Seoul 03127, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Center, National Cancer Institute, Goyang 10408, Korea
| | - Chul Woo Kim
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Bioinfra Life Science Inc, Seoul 03127, Korea
| | - Choong-Eun Lee
- Laboratory of Immunology, Department of Biological Science, College of Natural Science, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Xia T, Zhang L, Sun G, Yang X, Zhang H. Genomic evidence of adaptive evolution in the reptilian SOCS gene family. PeerJ 2021; 9:e11677. [PMID: 34221740 PMCID: PMC8236234 DOI: 10.7717/peerj.11677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The suppressor of the cytokine signaling (SOCS) family of proteins play an essential role in inhibiting cytokine receptor signaling by regulating immune signal pathways. Although SOCS gene functions have been examined extensively, no comprehensive study has been performed on this gene family's molecular evolution in reptiles. In this study, we identified eight canonical SOCS genes using recently-published reptilian genomes. We used phylogenetic analysis to determine that the SOCS genes had highly conserved evolutionary dynamics that we classified into two types. We identified positive SOCS4 selection signals in whole reptile lineages and SOCS2 selection signals in the crocodilian lineage. Selective pressure analyses using the branch model and Z-test revealed that these genes were under different negative selection pressures compared to reptile lineages. We also concluded that the nature of selection pressure varies across different reptile lineages on SOCS3, and the crocodilian lineage has experienced rapid evolution. Our results may provide a theoretical foundation for further analyses of reptilian SOCS genes' functional and molecular mechanisms, as well as their roles in reptile growth and development.
Collapse
Affiliation(s)
- Tian Xia
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Lei Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
6
|
Li X, Kong C, Fan Y, Liu J, Lu W, Meng C, Li A, Zhai A, Yan B, Song W, Han X. Demethylation of SOCS1 mediates its abnormally high expression in ovarian cancer. Oncol Lett 2019; 18:1330-1336. [PMID: 31423194 PMCID: PMC6607400 DOI: 10.3892/ol.2019.10451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/26/2019] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to investigate the association between methylation and the high expression of the suppressor of cytokine signaling 1 (SOCS1) in ovarian cancer by detecting the methylation rate and the degree of expression. The present study investigated the expression of SOCS1 mRNA and SOCS1 protein in ovarian cancer and normal ovary tissues using reverse transcription-quantitative polymerase chain reaction (PCR) and immunohistochemistry, and the methylation status of the CpG islands of SOCS1 mRNA in ovarian cancer tissue were examined using a methylation-specific PCR. The expression levels of SOCS1 mRNA in ovarian cancer specimens were significantly increased compared with that in the normal ovary tissues (P=0.0215). Consistent with this, the expression levels of SOCS1 protein in ovarian cancer specimens were significantly increased, while the methylation rate of SOCS1 mRNA was significantly decreased compared with that in the normal ovary tissues. Therefore, it may be concluded that the low methylation rate of SOCS1 mRNA in ovarian cancer increased the expression of SOCS1 mRNA, which may serve a role in the development of ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Chuimiao Kong
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuchun Fan
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jia Liu
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Weiyuan Lu
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Caiyun Meng
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Aimei Li
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Aixia Zhai
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Bingqing Yan
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Wuqi Song
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Xu Han
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
7
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
8
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
9
|
Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget 2018; 9:25808-25825. [PMID: 29899823 PMCID: PMC5995253 DOI: 10.18632/oncotarget.25380] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
The antitumor effect of metformin has been demonstrated in several types of cancer; however, the mechanisms involved are incompletely understood. In this study, we showed that metformin acts directly on melanoma cells as well as on the tumor microenvironment, particularly in the context of the immune response. In vitro, metformin induces a complex interplay between apoptosis and autophagy in melanoma cells. The anti-metastatic activity of metformin in vivo was assessed in several mouse models challenged with B16F10 cells. Metformin's activity was, in part, immune system-dependent, whereas its antitumor properties were abrogated in immunodeficient (NSG) mice. Metformin treatment increased the number of lung CD8-effector-memory T and CD4+Foxp3+IL-10+ T cells in B16F10-transplanted mice. It also decreased the levels of Gr-1+CD11b+ and RORγ+ IL17+CD4+ cells in B16F10-injected mice and the anti-metastatic effect was impaired in RAG-1−/− mice challenged with B16F10 cells, suggesting an important role for T cells in the protection induced by metformin. Finally, metformin in combination with the clinical metabolic agents rapamycin and sitagliptin showed a higher antitumor effect. The metformin/sitagliptin combination was effective in a BRAFV600E/PTEN tamoxifen-inducible murine melanoma model. Taken together, these results suggest that metformin has a pronounced effect on melanoma cells, including the induction of a strong protective immune response in the tumor microenvironment, leading to tumor growth control, and the combination with other metabolic agents may increase this effect.
Collapse
|
10
|
Yu SJ, Long ZW. Effect of SOCS1 silencing on proliferation and apoptosis of melanoma cells: An in vivo and in vitro study. Tumour Biol 2017; 39:1010428317694315. [PMID: 28466787 DOI: 10.1177/1010428317694315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effect of SOCS1 silencing on the proliferation and apoptosis of melanoma cells by in vivo and in vitro studies. Immunohistochemical staining was used to detect SOCS1 expression in melanoma tissues and pigmented nevi. Quantitative real-time polymerase chain reaction and western blotting were applied to detect the messenger RNA and protein expressions of SOCS1 in primary human melanocytes and malignant melanoma cell lines (A375, SK-MEL-5, M14, and MV3). Melanoma cells were assigned into mock, negative small interfering RNA, and SOCS1-small interfering RNA groups. The proliferation, cell cycle and apoptosis, and messenger RNA expression of SOCS1 in MV3 and A375 cells were detected using MTT assay, flow cytometry, and quantitative real-time polymerase chain reaction, respectively. The expressions of SOCS1 protein, extracellular signal-regulated kinase, and janus kinase signal transduction and activators of transcription signaling pathways-related proteins were detected using western blotting. After the establishment of subcutaneous xenograft tumor models in nude mice, the latent period, size, volume and growth speed of xenograft tumors in the mock, negative small interfering RNA, and SOCS1-small interfering RNA groups were examined and compared. The results indicated that positive expression rate of SOCS1 was higher in malignant melanoma tissues than in pigmented nevi. MV3 cells had the highest messenger RNA and protein expressions of SOCS1, followed by A357 cells. Compared with the mock and negative small interfering RNA groups, SOCS1-small interfering RNA group showed lower cell viability, elevated cell apoptosis, more cells in G0/G1 phase and less cells in S and G2/M phases, and decreased messenger RNA and protein expressions of SOCS1, p-ERK1/2, p-JAK2, p-STAT1, and p-STAT3. Compared with the mock and negative small interfering RNA groups, the SOCS1-small interfering RNA group showed longer latent period of tumor, smaller tumor size and volume, and smoother tumor growth curve. To conclude, SOCS1 silencing can inhibit proliferation and induce apoptosis of MV3 and A357 melanoma cells in vivo and in vitro by inhibiting extracellular signal-regulated kinase and janus kinase signal transduction and activators of transcription signaling pathways.
Collapse
Affiliation(s)
- Sheng-Jia Yu
- 1 Department of Gastric Cancer and Softtissue Sarcoma Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Wen Long
- 1 Department of Gastric Cancer and Softtissue Sarcoma Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,3 Department of medicine, Shigatse people's hospital, Shigatse 857000, P.R China
| |
Collapse
|
11
|
Berzaghi R, Maia VSC, Pereira FV, Melo FM, Guedes MS, Origassa CST, Scutti JB, Matsuo AL, Câmara NOS, Rodrigues EG, Travassos LR. SOCS1 favors the epithelial-mesenchymal transition in melanoma, promotes tumor progression and prevents antitumor immunity by PD-L1 expression. Sci Rep 2017; 7:40585. [PMID: 28079159 PMCID: PMC5227698 DOI: 10.1038/srep40585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023] Open
Abstract
Silencing of SOCS1 protein with shRNAi lentivirus (shR-SOCS1) led to partial reversion of the tumorigenic phenotype of B16F10-Nex2 melanoma cells. SOCS1 silencing inhibited cell migration and invasion as well as in vitro growth by cell cycle arrest at S phase with increased cell size and nuclei. Down-regulation of SOCS1 decreased the expression of epidermal growth factor receptor, Ins-Rα, and fibroblast growth factor receptors. The present work aimed at analyzing the SOCS1 cell signaling and expression of proteins relevant to tumor development. An RNA microarray analysis of B16F10-Nex2 melanoma cells with SOCS1 silenced by shRNAi-SOCS1 was undertaken in comparison with cells transduced with the empty vector. Among 609 differentially expressed genes, c-Kit, Met and EphA3 cytokine/tyrosine-kinase (TK) receptors were down regulated. A significant decrease in the expression of TK receptors, the phosphorylation of mediators of ERK1/2 and p38 pathways and STAT3 (S727) were observed. Subcutaneous immunization with shR-SOCS1-transduced viable tumor cells rendered protection against melanoma in a syngeneic model, with decreased expression of PD-L1 and of matrix metallo-proteinases (MMPs) and CD-10 in those cells. The present work shows the role of SOCS1 in murine melanoma development and the potential of SOCS1-silenced tumor cells in raising an effective anti-melanoma immune response.
Collapse
Affiliation(s)
- R. Berzaghi
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, University of São Paulo, São Paulo, Brazil
| | | | - F. V. Pereira
- Laboratory of Cancer Immunobiology, University of São Paulo, São Paulo, Brazil
| | - F. M. Melo
- Immunology Department, Federal University of São Paulo, São Paulo, Brazil
| | - M. S. Guedes
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, University of São Paulo, São Paulo, Brazil
| | - C. S. T. Origassa
- Laboratory of Cancer Immunobiology, University of São Paulo, São Paulo, Brazil
| | - J. B. Scutti
- Immunotherapy Platform, Department of Immunology, MD Anderson Cancer Center, Houston Texas, USA
| | - A. L. Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - N. O. S. Câmara
- Immunology Department, Biomedical Sciences Institute IV, University of São Paulo, São Paulo, Brazil
| | - E. G. Rodrigues
- Laboratory of Cancer Immunobiology, University of São Paulo, São Paulo, Brazil
| | - L. R. Travassos
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, University of São Paulo, São Paulo, Brazil
- Recepta Biopharma São Paulo, Brazil
| |
Collapse
|
12
|
Girola N, Matsuo AL, Figueiredo CR, Massaoka MH, Farias CF, Arruda DC, Azevedo RA, Monteiro HP, Resende-Lara PT, Cunha RLOR, Polonelli L, Travassos LR. The Ig V H complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides 2016; 85:1-15. [PMID: 27575453 DOI: 10.1016/j.peptides.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VHCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines. Rb9 also inhibited metastasis of murine melanoma in a syngeneic mouse model. We found that Rb9 binds to and interferes with Hsp90 chaperone activity causing attenuation of FAK-Src signaling and downregulation of active Rac1 in B16F10-Nex2 melanoma cells. The peptide also bound to an adhesion G-protein coupled receptor, triggering a concentration-dependent synthesis of cAMP and activation of PKA and VASP signaling as well as IP-3 dependent Ca2+ release. Hsp90 is highly expressed on the cell surface of melanoma cells, and synthetic agents that target Hsp90 are promising cancer therapeutic drugs. Based on their remarkable antitumor effects, the CDR-H3-derived peptides from RebMab200, and particularly the highly soluble and stable Rb9, are novel candidates to be further studied as potential antitumor drugs, selectively acting on cancer cell motility and invasion.
Collapse
Affiliation(s)
- Natalia Girola
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - Carlos R Figueiredo
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana H Massaoka
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Camyla F Farias
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, São Paulo, SP, Brazil
| | - Ricardo A Azevedo
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Hugo P Monteiro
- Center for Cellular and Molecular Therapy (CTCMol) and Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro T Resende-Lara
- Computation and Bioinformatic Biology laboratory, Federal University of ABC, Santo André, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, São Paulo, SP, Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Recepta Biopharma, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
SOCS1 in cancer: An oncogene and a tumor suppressor. Cytokine 2016; 82:87-94. [DOI: 10.1016/j.cyto.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
|
14
|
Kim KM, Im A, Kim SH, Hyun JW, Chae S. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis. Cancer Sci 2016; 107:181-8. [PMID: 26595378 PMCID: PMC4768391 DOI: 10.1111/cas.12852] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. We examined the effects of timosaponin AIII, a compound isolated from Anemarrhena asphodeloides Bunge, on melanoma cancer cell migration and the molecular mechanisms underlying these effects using B16-F10 and WM-115 melanoma cells lines. Overexpression of COX-2, its metabolite prostaglandin E2 (PGE2), and PGE2 receptors (EP2 and EP4) promoted cell migration in vitro. Exposure to timosaponin AIII resulted in concentration-dependent inhibition of cell migration, which was associated with reduced levels of COX-2, PGE2, and PGE2 receptors. Transient transfection of COX-2 siRNA also inhibited cell migration. Exposure to 12-O-tetradecanoylphorbal-13-acetate enhanced cell migration, whereas timosaponin AIII inhibited 12-O-tetradecanoylphorbal-13-acetate-induced cell migration and reduced basal levels of EP2 and EP4. Moreover, timosaponin AIII inhibited activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2 in B16-F10 cells. Consistent with our in vitro findings, in vivo studies showed that timosaponin AIII treatment significantly reduced the total number of metastatic nodules in the mouse lung and improved histological alterations in B16-F10-injected C57BL/6 mice. In addition, C57BL/6 mice treated with timosaponin AIII showed reduced expression of COX-2 and NF-κB in the lung. Together, these results indicate that timosaponin AIII has the capacity to inhibit melanoma cell migration, an essential step in the process of metastasis, by inhibiting expression of COX-2, NF-κB, PGE2, and PGE2 receptors.
Collapse
Affiliation(s)
- Ki Mo Kim
- KM Convergence Research DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - A‐Rang Im
- KM Convergence Research DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and BioscienceDaejeon UniversityDaejeonKorea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and TechnologyJeju National UniversityJejuKorea
| | - Sungwook Chae
- KM Convergence Research DivisionKorea Institute of Oriental MedicineDaejeonKorea
| |
Collapse
|
15
|
Tobelaim WS, Beaurivage C, Champagne A, Pomerleau V, Simoneau A, Chababi W, Yeganeh M, Thibault P, Klinck R, Carrier JC, Ferbeyre G, Ilangumaran S, Saucier C. Tumour-promoting role of SOCS1 in colorectal cancer cells. Sci Rep 2015; 5:14301. [PMID: 26391193 PMCID: PMC4585755 DOI: 10.1038/srep14301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
The SOCS1 (Suppressor Of Cytokine Signalling 1) protein is considered a tumour suppressor. Notably, the SOCS1 gene is frequently silenced in cancer by hypermethylation of its promoter. Besides blocking inflammation, SOCS1 tumour suppressor activity involves Met receptor inhibition and enhancement of p53 tumour suppressor activity. However, the role of SOCS1 in colorectal cancer (CRC) remains understudied and controversial. Here, we investigated SOCS1 relevance for CRC by querying gene expression datasets of human CRC specimens from The Cancer Genome Atlas (TCGA), and by SOCS1 gain/loss-of-function analyses in murine and human colon carcinoma cells. Our results show that SOCS1 mRNA levels in tumours were more often elevated than reduced with respect to matched adjacent normal tissue of CRC specimens (n = 41). The analysis of TCGA dataset of 431 CRC patients revealed no correlation between SOCS1 expression and overall survival. Overexpression of SOCS1 in CRC cells triggered cell growth enhancement, anchorage-independent growth and resistance to death stimuli, whereas knockdown of SOCS1 reduced these oncogenic features. Moreover, SOCS1 overexpression in mouse CT26 cells increased tumourigenesis in vivo. Biochemical analyses showed that SOCS1 pro-oncogenic activity correlated with the down-modulation of STAT1 expression. Collectively, these results suggest that SOCS1 may work as an oncogene in CRC.
Collapse
Affiliation(s)
- William S Tobelaim
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Claudia Beaurivage
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Audrey Champagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Véronique Pomerleau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Aline Simoneau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Walid Chababi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Mehdi Yeganeh
- Department of Pediatrics and Immunology division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Philippe Thibault
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Roscoe Klinck
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Julie C Carrier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| | - Subburaj Ilangumaran
- Department of Pediatrics and Immunology division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| |
Collapse
|
16
|
XU YANG, WANG WENLING, GOU AIHONG, LI HAITAO, TIAN YANLI, YAO MEIHUA, YANG RONGYA. Effects of suppressor of cytokine signaling 1 silencing on human melanoma cell proliferation and interferon-γ sensitivity. Mol Med Rep 2014; 11:583-8. [DOI: 10.3892/mmr.2014.2674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/22/2014] [Indexed: 11/05/2022] Open
|
17
|
Tucci M, Stucci S, Passarelli A, Giudice G, Dammacco F, Silvestris F. The immune escape in melanoma: role of the impaired dendritic cell function. Expert Rev Clin Immunol 2014; 10:1395-404. [DOI: 10.1586/1744666x.2014.955851] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Laner-Plamberger S, Wolff F, Kaser-Eichberger A, Swierczynski S, Hauser-Kronberger C, Frischauf AM, Eichberger T. Hedgehog/GLI signaling activates suppressor of cytokine signaling 1 (SOCS1) in epidermal and neural tumor cells. PLoS One 2013; 8:e75317. [PMID: 24058673 PMCID: PMC3769249 DOI: 10.1371/journal.pone.0075317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/13/2013] [Indexed: 12/29/2022] Open
Abstract
Sustained hedgehog (Hh) signaling mediated by the GLI transcription factors is implicated in many types of cancer. Identification of Hh/GLI target genes modulating the activity of other pathways involved in tumor development promise to open new ways for better understanding of tumor development and maintenance. Here we show that SOCS1 is a direct target of Hh/GLI signaling in human keratinocytes and medulloblastoma cells. SOCS1 is a potent inhibitor of interferon gamma (IFN-y)/STAT1 signaling. IFN-у/STAT1 signaling can induce cell cycle arrest, apoptosis and anti-tumor immunity. The transcription factors GLI1 and GLI2 activate the SOCS1 promoter, which contains five putative GLI binding sites, and GLI2 binding to the promoter was shown by chromatin immunoprecipitation. Consistent with a role of GLI in SOCS1 regulation, STAT1 phosphorylation is reduced in cells with active Hh/GLI signaling and IFN-у/STAT1 target gene activation is decreased. Furthermore, IFN-у signaling is restored by shRNA mediated knock down of SOCS1. Here, we identify SOCS1 as a novel Hh/GLI target gene, indicating a negative role of Hh/GLI pathway in IFN-y/STAT1 signaling.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital of Salzburg, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- * E-mail:
| | - Florian Wolff
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- Department of Ophthalmology, University Hospital, Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Swierczynski
- Department of Pathology, University Hospital of Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Cornelia Hauser-Kronberger
- Department of Pathology, University Hospital of Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - Thomas Eichberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
19
|
HWANG SUNGHEE, LEE BYUNGHWAN, KIM HYEONJOONG, CHO HEEJUNG, SHIN HOCHUL, IM KEUMSOON, CHOI SUNHYE, SHIN TAEJOON, LEE SANGMOK, NAM SUKWOO, KIM HYOUNGCHUN, RHIM HYEWON, NAH SEUNGYEOL. Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: Involvement of autotaxin inhibition. Int J Oncol 2012; 42:317-26. [DOI: 10.3892/ijo.2012.1709] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/05/2012] [Indexed: 11/06/2022] Open
|
20
|
Iwahori K, Serada S, Fujimoto M, Ripley B, Nomura S, Mizuguchi H, Shimada K, Takahashi T, Kawase I, Kishimoto T, Naka T. SOCS-1gene delivery cooperates with cisplatin plus pemetrexed to exhibit preclinical antitumor activity against malignant pleural mesothelioma. Int J Cancer 2012; 132:459-71. [DOI: 10.1002/ijc.27611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/16/2012] [Indexed: 01/29/2023]
|
21
|
Tsuda K, Yamanaka K, Linan W, Miyahara Y, Akeda T, Nakanishi T, Kitagawa H, Kakeda M, Kurokawa I, Shiku H, Gabazza EC, Mizutani H. Intratumoral injection of Propionibacterium acnes suppresses malignant melanoma by enhancing Th1 immune responses. PLoS One 2011; 6:e29020. [PMID: 22216160 PMCID: PMC3244427 DOI: 10.1371/journal.pone.0029020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 11/18/2011] [Indexed: 01/28/2023] Open
Abstract
Malignant melanoma (MM) is an aggressive cutaneous malignancy associated with poor prognosis; many putatively therapeutic agents have been administered, but with mostly unsuccessful results. Propionibacterium acnes (P. acnes) is an aerotolerant anaerobic gram-positive bacteria that causes acne and inflammation. After being engulfed and processed by phagocytes, P. acnes induces a strong Th1-type cytokine immune response by producing cytokines such as IL-12, IFN-γ and TNF-α. The characteristic Th2-mediated allergic response can be counteracted by Th1 cytokines induced by P. acnes injection. This inflammatory response induced by P. acnes has been suggested to have antitumor activity, but its effect on MM has not been fully evaluated.We analyzed the anti-tumor activity of P. acnes vaccination in a mouse model of MM. Intratumoral administration of P. acnes successfully protected the host against melanoma progression in vivo by inducing both cutaneous and systemic Th1 type cytokine expression, including TNF-α and IFN-γ, which are associated with subcutaneous granuloma formation. P. acnes-treated tumor lesions were infiltrated with TNF-α and IFN-γ positive T cells. In the spleen, TNF-α as well as IFN-γ producing CD8(+)T cells were increased, and interestingly, the number of monocytes was also increased following P. acnes administration. These observations suggest that P. acnes vaccination induces both systemic and local antitumor responses. In conclusion, this study shows that P. acnes vaccination may be a potent therapeutic alternative in MM.
Collapse
Affiliation(s)
- Kenshiro Tsuda
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
- * E-mail:
| | - Wang Linan
- Department of Immuno-gene Therapy, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-gene Therapy, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Tomoko Akeda
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Takehisa Nakanishi
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Hiroshi Kitagawa
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Masato Kakeda
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Ichiro Kurokawa
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Hiroshi Shiku
- Department of Immuno-gene Therapy, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Hitoshi Mizutani
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| |
Collapse
|