1
|
St Laurent B, Sukowati S, Burton TA, Bretz D, Zio M, Firman S, Sumardi, Sudibyo H, Safitri A, Suwito, Asih PB, Kosasih S, Shinta, Hawley WA, Burkot TR, Collins FH, Syafruddin D, Lobo NF. Comparative evaluation of anopheline sampling methods in three localities in Indonesia. Malar J 2018; 17:13. [PMID: 29310656 PMCID: PMC5759267 DOI: 10.1186/s12936-017-2161-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/23/2017] [Indexed: 12/02/2022] Open
Abstract
Background The effectiveness of vector control efforts can vary based on the interventions used and local mosquito behaviour and adaptability. In many settings, biting patterns of Anopheles mosquitoes can shift in response to interventions targeting indoor-biting mosquitoes, often resulting in higher proportions of mosquitoes feeding outside or at times when people are not protected. These behaviourally resistant mosquitoes have been shown to sustain residual malaria transmission and limit control efforts. Therefore, it is important to accurately sample mosquitoes to understand their behaviour. Methods A variety of traps were evaluated in three geographically diverse sites in malaria-endemic Indonesia to investigate local mosquito feeding behaviour and determine effective traps for surveillance. Results Eight traps were evaluated in three sites: Canti village, Lampung, Kaliharjo village, Purworejo, and Saketa village, Halmahera, Indonesia, including the gold standard human landing collection (HLC) and a variety of traps targeting host-seeking and resting mosquitoes both indoors and outdoors. Trapping, using indoor and outdoor HLC, the Ifakara tent trap C, goat and human-occupied tents, resting pots and boxes, and CDC miniature light traps was conducted for 16 nights in two sites and 8 nights in a third site, using a Latin square design. Trap efficacy varied by site, with outdoor HLC yielding the highest catch rates in Canti and Kaliharjo and a goat-baited tent trap proving most effective in Saketa. In Canti village, anthropophilic Anopheles sundaicus were caught indoors and outdoors using HLCs, peaking in the early morning. In Kaliharjo, a variety of mosquitoes were caught, mostly outdoors throughout the night. HLC was ineffective in Saketa, the only site where a goat-baited tent trap was tested. This trap was effective in catching zoophilic vectors outdoors before midnight. Conclusions Different trapping methods were suitable for different species, likely reflecting differences in behaviour among species. The three villages, each located on a different island in the Indonesian archipelago, contained mosquito populations with unique behaviours. These data suggest that the effectiveness of specific vector monitoring and control measures may vary by location. Electronic supplementary material The online version of this article (10.1186/s12936-017-2161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandyce St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA. .,National Institutes of Health, Bethesda, MD, USA.
| | - Supratman Sukowati
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - David Bretz
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Mulyadi Zio
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Syah Firman
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Sumardi
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Heru Sudibyo
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Amalia Safitri
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Suwito
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Puji B Asih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Sully Kosasih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Shinta
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - William A Hawley
- Centers for Disease Control and Prevention, Atlanta, GA, USA.,Unicef, Jakarta, Indonesia
| | - Thomas R Burkot
- Queensland Tropical Health Alliance, James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, Australia
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci Rep 2015; 5:14529. [PMID: 26434951 PMCID: PMC4592963 DOI: 10.1038/srep14529] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/25/2015] [Indexed: 11/08/2022] Open
Abstract
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.
Collapse
|
3
|
Elyazar IR, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R, Winarno, Baird JK, Hay SI, Bangs MJ. The distribution and bionomics of anopheles malaria vector mosquitoes in Indonesia. ADVANCES IN PARASITOLOGY 2013; 83:173-266. [PMID: 23876873 DOI: 10.1016/b978-0-12-407705-8.00003-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Malaria remains one of the greatest human health burdens in Indonesia. Although Indonesia has a long and renowned history in the early research and discoveries of malaria and subsequently in the successful use of environmental control methods to combat the vector, much remains unknown about many of these mosquito species. There are also significant gaps in the existing knowledge on the transmission epidemiology of malaria, most notably in the highly malarious eastern half of the archipelago. These compound the difficulty of developing targeted and effective control measures. The sheer complexity and number of malaria vectors in the country are daunting. The difficult task of summarizing the available information for each species and/or species complex is compounded by the patchiness of the data: while relatively plentiful in one area or region, it can also be completely lacking in others. Compared to many other countries in the Oriental and Australasian biogeographical regions, only scant information on vector bionomics and response to chemical measures is available in Indonesia. That information is often either decades old, geographically patchy or completely lacking. Additionally, a large number of information sources are published in Dutch or Indonesian language and therefore less accessible. This review aims to present an updated overview of the known distribution and bionomics of the 20 confirmed malaria vector species or species complexes regarded as either primary or secondary (incidental) malaria vectors within Indonesia. This chapter is not an exhaustive review of each of these species. No attempt is made to specifically discuss or resolve the taxonomic record of listed species in this document, while recognizing the ever evolving revisions in the systematics of species groups and complexes. A review of past and current status of insecticide susceptibility of eight vector species of malaria is also provided.
Collapse
|
4
|
Aigbodion FI, Uyi OO. Temporal Distribution of and Habitat Diversification by Some Mosquitoes (Diptera: Culicidae) Species in Benin City, Nigeria. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/je.2013.13.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Tuten HC. Habitat characteristics of larval mosquitoes in zoos of South Carolina, USA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2011; 27:111-119. [PMID: 21805842 DOI: 10.2987/10-6061.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To investigate whether the unique assemblage of habitats in zoos could affect mosquito oviposition behavior and to provide zoos with suggestions for mosquito control, larvae were sampled and associated habitat variables were measured in 2 zoos in South Carolina, U.S.A. Fifty-nine sites were sampled from March 2008 to January 2009. A total of 1630 larvae representing 16 species was collected and identified. The dominant species was Aedes albopictus (46.0%), followed by Ae. triseriatus (23.6%), Culex restuans (12.4%), and Cx. pipiens complex (9.7%). Principal components and multiple logistic regression analyses showed that across both zoos the distribution of Ae. albopictus larvae was predicted by ambient and site temperature, precipitation, dissolved oxygen, and container habitats. The distribution of Ae. triseriatus larvae was predicted by natural containers and shade height < or =2 m. Overall larval mosquito presence (regardless of species) was predicted by ambient and site temperature, precipitation, dissolved oxygen, presence of natural habitats, and absence of aquatic vegetation. Additionally, C8 values of pairwise species associations indicated significant habitat-based relationships between Ae. albopictus and Ae. triseriatus, and Cx. pipiens complex and Cx. restuans. In general, species-habitat associations conformed to previously published studies. Recommendations to zoo personnel include elimination of artificial container habitats, reduction of shade sources < or =2 m over aquatic habitats, use of approved mosquito larvicides, and training in recognizing and mitigating larval mosquito habitats.
Collapse
Affiliation(s)
- Holly C Tuten
- Department of Entomology, Soils and Plant Sciences, Clemson University, SC 29634-0315, USA
| |
Collapse
|
6
|
Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IRF, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2011; 4:89. [PMID: 21612587 PMCID: PMC3127851 DOI: 10.1186/1756-3305-4-89] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. RESULTS Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. CONCLUSIONS This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.
Collapse
Affiliation(s)
- Marianne E Sinka
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Michael J Bangs
- Public Health and Malaria Control Department, PT Freeport Indonesia, Kuala Kencana, Papua, Indonesia
| | - Sylvie Manguin
- Institut de Recherche pour le Développement, Lab. d'Immuno-Physiopathologie Moléculaire Comparée, UMR-MD3/Univ. Montpellier 1, Faculté de Pharmacie, 15, Ave Charles Flahault, 34093 Montpellier, France
| | | | - Anand P Patil
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - William H Temperley
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Peter W Gething
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Caroline W Kabaria
- Malaria Public Health and Epidemiology Group, Centre for Geographic Medicine, KEMRI - Univ. Oxford - Wellcome Trust Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| | - Ralph E Harbach
- Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Simon I Hay
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Malaria Public Health and Epidemiology Group, Centre for Geographic Medicine, KEMRI - Univ. Oxford - Wellcome Trust Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| |
Collapse
|
7
|
Ndoen E, Wild C, Dale P, Sipe N, Dale M. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia. Malar J 2010; 9:242. [PMID: 20796265 PMCID: PMC2939620 DOI: 10.1186/1475-2875-9-242] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 08/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a serious health issue in Indonesia. Mosquito control is one aspect of an integrated malaria management programme. To focus resources on priority areas, information is needed about the vectors and their habitats. This research aimed to identify the relationship between anopheline mosquitoes and topography in West Timor and Java. METHODS Study areas were selected in three topographic types in West Timor and Java. These were: coastal plain, hilly (rice field) and highland. Adult mosquitoes were captured landing on humans identified to species level and counted. RESULTS Eleven species were recorded, four of which were significant for malaria transmission: Anopheles aconitus, Anopheles barbirostris, Anopheles subpictus and Anopheles sundaicus. Each species occupied different topographies, but only five were significantly associated: Anopheles annularis, Anopheles vagus and Anopheles subpictus (Java only) with hilly rice fields; Anopheles barbirostris, Anopheles maculatus and Anopheles subpictus (West Timor only) with coastal areas. CONCLUSION Information on significant malaria vectors associated with specific topography is useful for planning the mosquito control aspect of malaria management.
Collapse
Affiliation(s)
- Ermi Ndoen
- Griffith School of Environment, Griffith University, Queensland, Australia.
| | | | | | | | | |
Collapse
|
8
|
Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Keokenchanh K, Coosemans M. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors 2010; 3:59. [PMID: 20646327 PMCID: PMC2915968 DOI: 10.1186/1756-3305-3-59] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/21/2010] [Indexed: 07/19/2023] Open
Abstract
Background In the Mekong region (Vietnam, Cambodia and Laos), a large investigation was conducted to assess the susceptibility of Anopheles species against DDT and pyrethroids. In this study, the resistance status of the potential malaria vectors An. vagus, An. sinensis, An. paraliae and An. peditaeniatus was assessed. Methods Bioassays were performed on field collected unfed female mosquitoes using the standard WHO susceptibility tests. In addition, the DIIS6 region of the para-type sodium channel gene was amplified and sequenced and four allele-specific PCR assays were developed to assess the kdr frequencies. Results In Southern Vietnam all species were DDT and pyrethroid resistant, which might suggest the presence of a kdr resistance mechanism. Sequence-analysis of the DIIS6 region of the para-type sodium channel gene revealed the presence of a L1014S kdr mutation in An. vagus, An. sinensis and An. paraliae. In An. peditaeniatus, a low frequency L1014S kdr mutation was found in combination with a high frequency L1014F kdr mutation. For pyrethroids and DDT, no genotypic differentiation was found between survivors and non-survivors for any of these species. In the two widespread species, An. vagus and An. sinensis, kdr was found only in southern Vietnam and in Cambodia near the Vietnamese border. Conclusions Different levels of resistance were measured in Laos, Cambodia and Vietnam. The kdr mutation in different Anopheles species seems to occur in the same geographical area. These species breed in open agricultural lands where malaria endemicity is low or absent and vector control programs less intensive. It is therefore likely that the selection pressure occurred on the larval stages by insecticides used for agricultural purposes.
Collapse
Affiliation(s)
- Katrijn Verhaeghen
- Department of Parasitology, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000 Antwerpen, Belgium.
| | | | | | | | | | | |
Collapse
|
9
|
Van Bortel W, Trung HD, Thuan LK, Sochantha T, Socheat D, Sumrandee C, Baimai V, Keokenchanh K, Samlane P, Roelants P, Denis L, Verhaeghen K, Obsomer V, Coosemans M. The insecticide resistance status of malaria vectors in the Mekong region. Malar J 2008; 7:102. [PMID: 18534006 PMCID: PMC2467428 DOI: 10.1186/1475-2875-7-102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 06/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance. METHODS A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes. RESULTS Anopheles dirus s.s., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, Anopheles epiroticus was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant Anopheles minimus s.l. populations were found, whereas An. minimus s.l. from Cambodia, Laos and Thailand were susceptible. Only two An. minimus s.l. populations showed DDT tolerance. Anopheles vagus was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia. CONCLUSION This is the first large scale, cross-country survey of insecticide resistance in Anopheles species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.
Collapse
Affiliation(s)
- Wim Van Bortel
- Institute of Tropical Medicine, Dept, Parasitology, Nationalestraat 155, B-2000 Antwerpen, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|