1
|
Endemic Jeffrey Pine Beetle Associates: Beetle/Mite Fungal Dissemination Strategies and Interactions That May Influence Beetle Population Levels. Microorganisms 2021; 9:microorganisms9081641. [PMID: 34442720 PMCID: PMC8399797 DOI: 10.3390/microorganisms9081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Fungal and mite associates may drive changes in bark beetle populations, and mechanisms constraining beetle irruptions may be hidden in endemic populations. We characterized common fungi of endemic-level Jeffrey pine beetle (JPB) in western USA and analyzed their dissemination by JPB (maxillae and fecal pellet) and fungivorous mites to identify if endogenous regulation drove the population. We hypothesized that: (1) as in near-endemic mountain pine beetle populations, JPB’s mutualistic fungus would either be less abundant in endemic than in non-endemic populations or that another fungus may be more prevalent; (2) JPB primarily transports its mutualistic fungus, while its fungivorous mites primarily transport another fungus, and (3) based on the prevalence of yeasts in bark beetle symbioses, that a mutualistic interaction with blue-stain fungi present in that system may exist. Grosmannia clavigera was the most frequent JPB symbiont; however, the new here reported antagonist, Ophiostoma minus, was second in frequency. As hypothesized, JPB mostly carried its mutualist fungus while another fungus (i.e., antagonistic) was mainly carried by mites, but no fungal transport was obligate. Furthermore, we found a novel mutualistic interaction between the yeast Kuraishia molischiana and G. clavigera which fostered a growth advantage at temperatures associated with beetle colonization.
Collapse
|
2
|
Cale JA, Klutsch JG, Dykstra CB, Peters B, Erbilgin N. Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species. TREE PHYSIOLOGY 2019; 39:1121-1135. [PMID: 30877758 DOI: 10.1093/treephys/tpz012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Phytopathogenic ophiostomatoid fungi are common associates of bark beetles and contribute to beetle-associated mortality of trees. Mountain pine beetle outbreaks in Canada are facilitating novel associations between its vectored fungi (Grosmannia clavigera, Leptographium longiclavatum and Ophiostoma montium) and jack pine. How the induced defense-related metabolite responses of jack and lodgepole pines vary in response to the fungi is unknown. Understanding this variation is important to clarifying pine susceptibility to and the physiological impacts of infection. We used a comparative metabolite profiling approach to investigate the defense-related signaling, carbon utilization/mobilization, and synthesis responses of both pines to the fungi. Both pine species largely exhibited similar metabolite responses to the fungi. The magnitude of pine metabolite responses positively reflected pathogen virulence. Our findings indicate that pines can recognize and metabolomically respond to novel pathogens, likely due to signals common between the novel fungi and fungi coevolved with the pine. Thus, jack pine is likely as susceptible as lodgepole pine to infections by each of the MPB-vectored fungi. Furthermore, the magnitude of the metabolite responses of both pines varied by the eliciting fungal species, with the most virulent pathogen causing the greatest reduction in carbohydrates and the highest accumulation of defensive terpenes.
Collapse
Affiliation(s)
- Jonathan A Cale
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Christien B Dykstra
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Brosnon Peters
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus, including 11 new species from China. Persoonia - Molecular Phylogeny and Evolution of Fungi 2018; 42:50-74. [PMID: 31551614 PMCID: PMC6712535 DOI: 10.3767/persoonia.2019.42.03] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022]
Abstract
Ips typographus (Coleoptera, Scolytinae) is a spruce-infesting bark beetle that occurs throughout Europe and Asia. The beetle can cause considerable damage, especially when colonized trees are stressed and beetle populations increase. Although some studies have shown that populations of I. typographus in Europe, China and Japan are genetically distinct, these populations are biologically similar, including a strong association with ophiostomatoid fungi. To date, only two Leptographium spp. have been reported from the beetle in China, while 40 species have been reported from Europe and 13 from Japan. The aims of this study were to identify the ophiostomatoid fungal associates of I. typographus in north-eastern China, and to determine whether the fungal assemblages reflect the different geographical populations of the beetle. Field surveys in Jilin and Heilongjiang provinces yielded a total of 1 046 fungal isolates from 145 beetles and 178 galleries. Isolates were grouped based on morphology and representatives of each group were identified using DNA sequences of the ribosomal LSU, ITS, β-tubulin, calmodulin and elongation factor 1-α gene regions. A total of 23 species of ophiostomatoid fungi were identified, including 12 previously described species and 11 novel species, all of which are described here. The dominant species were Ophiostoma bicolor, Leptographium taigense and Grosmannia piceiperda D, representing 40.5 %, 27.8 % and 17.8 % of the isolates, respectively. Comparisons of species from China, Europe and Japan are complicated by the fact that some of the European and all the Japanese species were identified based only on morphology. However, assuming that those identifications are correct, five species were shared between Europe, Japan and China, two species were shared between China and Japan, five between Europe and China, and two between Europe and Japan. Consequently, Ips typographus populations in these different geographic areas have different fungal assemblages, suggesting that the majority of these beetle-associations are promiscuous. The results also suggested that the symbionts of the bark beetle do not reflect the population structures of the beetle. The use of fungal symbiont assemblages to infer population structures and invasion history of its vectors should thus be interpreted with circumspection.
Collapse
|
4
|
Gao G, Gao J, Hao C, Dai L, Chen H. Biodiversity and Activity of Gut Fungal Communities across the Life History of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae). Int J Mol Sci 2018; 19:ijms19072010. [PMID: 29996485 PMCID: PMC6073459 DOI: 10.3390/ijms19072010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
We comprehensively investigated the biodiversity of fungal communities in different developmental stages of Trypophloeus klimeschi and the difference between sexes and two generations by high throughput sequencing. The predominant species found in the intestinal fungal communities mainly belong to the phyla Ascomycota and Basidiomycota. Fungal community structure varies with life stage. The genera Nakazawaea, Trichothecium, Aspergillus, Didymella, Villophora, and Auricularia are most prevalent in the larvae samples. Adults harbored high proportions of Graphium. The fungal community structures found in different sexes are similar. Fusarium is the most abundant genus and conserved in all development stages. Gut fungal communities showed notable variation in relative abundance during the overwintering stage. Fusarium and Nectriaceae were significantly increased in overwintering mature larvae. The data indicates that Fusarium might play important roles in the survival of T. klimeschi especially in the overwintering stage. The authors speculated that Graphium plays an important role in the invasion and colonization of T. klimeschi. The study will contribute to the understanding of the biological role of the intestinal fungi in T. klimeschi, which might provide an opportunity and theoretical basis to promote integrated pest management (IPM) of T. klimeschi.
Collapse
Affiliation(s)
- Guanqun Gao
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Jing Gao
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Chunfeng Hao
- Tianjin Forestry Pest Control and Quarantine Station, Tianjin 300000, China.
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling 712100, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Klutsch JG, Najar A, Cale JA, Erbilgin N. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection. Oecologia 2016; 182:1-12. [PMID: 26820567 DOI: 10.1007/s00442-016-3559-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
Abstract
Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.
Collapse
Affiliation(s)
- Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Ahmed Najar
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Jonathan A Cale
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
6
|
Therrien J, Mason CJ, Cale JA, Adams A, Aukema BH, Currie CR, Raffa KF, Erbilgin N. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia 2015; 179:467-85. [PMID: 26037523 DOI: 10.1007/s00442-015-3356-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates.
Collapse
Affiliation(s)
- Janet Therrien
- Department of Renewable Resources, University of Alberta, Edmonton, AB, USA
| | - Charles J Mason
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| | - Jonathan A Cale
- Department of Renewable Resources, University of Alberta, Edmonton, AB, USA
| | - Aaron Adams
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, USA.
| |
Collapse
|
7
|
Lusebrink I, Erbilgin N, Evenden ML. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest? J Chem Ecol 2013; 39:1209-20. [PMID: 23955061 DOI: 10.1007/s10886-013-0334-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 12/14/2022]
Abstract
Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.
Collapse
Affiliation(s)
- Inka Lusebrink
- Department of Biological Sciences, University of Alberta, CW405 Biological Science Building, Edmonton, Alberta, Canada, T6G 2E9,
| | | | | |
Collapse
|
8
|
Khadempour L, LeMay V, Jack D, Bohlmann J, Breuil C. The relative abundance of mountain pine beetle fungal associates through the beetle life cycle in pine trees. MICROBIAL ECOLOGY 2012; 64:909-917. [PMID: 22735936 DOI: 10.1007/s00248-012-0077-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
The mountain pine beetle (MPB) is a native bark beetle of western North America that attacks pine tree species, particularly lodgepole pine. It is closely associated with the ophiostomatoid ascomycetes Grosmannia clavigera, Leptographium longiclavatum, Ophiostoma montium, and Ceratocystiopsis sp.1, with which it is symbiotically associated. To develop a better understanding of interactions between beetles, fungi, and host trees, we used target-specific DNA primers with qPCR to assess the changes in fungal associate abundance over the stages of the MPB life cycle that occur in galleries under the bark of pine trees. Multivariate analysis of covariance identified statistically significant changes in the relative abundance of the fungi over the life cycle of the MPB. Univariate analysis of covariance identified a statistically significant increase in the abundance of Ceratocystiopsis sp.1 through the beetle life cycle, and pair-wise analysis showed that this increase occurs after the larval stage. In contrast, the abundance of O. montium and Leptographium species (G. clavigera, L. longiclavatum) did not change significantly through the MPB life cycle. From these results, the only fungus showing a significant increase in relative abundance has not been formally described and has been largely ignored by other MPB studies. Although our results were from only one site, in previous studies we have shown that the fungi described were all present in at least ten sites in British Columbia. We suggest that the role of Ceratocystiopsis sp.1 in the MPB system should be explored, particularly its potential as a source of nutrients for teneral adults.
Collapse
|
9
|
Popa V, Déziel E, Lavallée R, Bauce E, Guertin C. The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry. PEST MANAGEMENT SCIENCE 2012; 68:963-75. [PMID: 22566204 DOI: 10.1002/ps.3307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 05/14/2023]
Abstract
Bark beetles, especially Dendroctonus species, are considered to be serious pests of the coniferous forests in North America. Bark beetle forest pests undergo population eruptions, causing region wide economic losses. In order to save forests, finding new and innovative environmentally friendly approaches in wood-boring insect pest management is more important than ever. Several biological control methods have been attempted over time to limit the damage and spreading of bark beetle epidemics. The use of entomopathogenic microorganisms against bark beetle populations is an attractive alternative tool for many biological control programmes in forestry. However, the effectiveness of these biological control agents is strongly affected by environmental factors, as well as by the susceptibility of the insect host. Bark beetle susceptibility to entomopathogens varies greatly between species. According to recent literature, bark beetles are engaged in symbiotic relationships with fungi and bacteria. These types of relationship are very complex and apparently involved in bark beetle defensive mechanisms against pathogens. The latest scientific discoveries in multipartite symbiosis have unravelled unexpected opportunities in bark beetle pest management, which are discussed in this article.
Collapse
Affiliation(s)
- Valentin Popa
- INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | | | | | | | | |
Collapse
|
10
|
Clark EL, Huber DPW, Carroll AL. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins. ENVIRONMENTAL ENTOMOLOGY 2012; 41:392-8. [PMID: 22507014 DOI: 10.1603/en11295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most serious pest of pines (Pinus) in western North America. Host pines protect themselves from attack by producing a complex mixture of terpenes in their resin. We sampled lodgepole pine (Pinus contorta variety latifolia) phloem resin at four widely separated locations in the interior of British Columbia, Canada, both just before (beginning of July) and substantially after (end of August) the mountain pine beetle dispersal period. The sampled trees then were observed the next spring for evidence of survival, and the levels of seven resin monoterpenes were compared between July and August samples. Trees that did not survive consistently had significantly higher phloem resin monoterpene levels at the end of August compared with levels in July. Trees that did survive mainly did not exhibit a significant difference between the two sample dates. The accumulation of copious defense-related secondary metabolites in the resin of mountain pine beetle-killed lodgepole pine has important implications for describing the environmental niche that the beetle offspring survive in as well as that of parasitoids, predators, and other associates.
Collapse
Affiliation(s)
- E L Clark
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada.
| | | | | |
Collapse
|
11
|
Six DL. Ecological and Evolutionary Determinants of Bark Beetle -Fungus Symbioses. INSECTS 2012; 3:339-66. [PMID: 26467964 PMCID: PMC4553632 DOI: 10.3390/insects3010339] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/01/2012] [Accepted: 03/15/2012] [Indexed: 11/23/2022]
Abstract
Ectosymbioses among bark beetles (Curculionidae, Scolytinae) and fungi (primarily ophiostomatoid Ascomycetes) are widespread and diverse. Associations range from mutualistic to commensal, and from facultative to obligate. Some fungi are highly specific and associated only with a single beetle species, while others can be associated with many. In addition, most of these symbioses are multipartite, with the host beetle associated with two or more consistent partners. Mycangia, structures of the beetle integument that function in fungal transport, have evolved numerous times in the Scolytinae. The evolution of such complex, specialized structures indicates a high degree of mutual dependence among the beetles and their fungal partners. Unfortunately, the processes that shaped current day beetle-fungus symbioses remain poorly understood. Phylogeny, the degree and type of dependence on partners, mode of transmission of symbionts (vertical vs. horizontal), effects of the abiotic environment, and interactions among symbionts themselves or with other members of the biotic community, all play important roles in determining the composition, fidelity, and longevity of associations between beetles and their fungal associates. In this review, I provide an overview of these associations and discuss how evolution and ecological processes acted in concert to shape these fascinating, complex symbioses.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
12
|
Roe AD, James PMA, Rice AV, Cooke JEK, Sperling FAH. Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient. MICROBIAL ECOLOGY 2011; 62:347-60. [PMID: 21468661 PMCID: PMC3155041 DOI: 10.1007/s00248-011-9841-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/28/2011] [Indexed: 05/21/2023]
Abstract
Symbiont redundancy in obligate insect-fungal systems is thought to buffer the insect host against symbiont loss and to extend the environmental conditions under which the insect can persist. The mountain pine beetle is associated with at least three well-known and putatively obligate ophiostomatoid fungal symbionts that vary in their environmental tolerances. To better understand the spatial variation in beetle-fungal symbiotic associations, we examined the community composition of ophiostomatoid fungi associated with the mountain pine beetle as a function of latitude and elevation. The region investigated represents the leading edge of a recent outbreak of mountain pine beetle in western Canada. Using regression and principal components analysis, we identified significant spatial patterns in fungal species abundances that indicate symmetrical replacement between two of the three fungi along a latitudinal gradient and little variation in response to elevation. We also identified significant variation in the prevalence of pair-wise species combinations that occur within beetle galleries. Frequencies of pair-wise combinations were significantly different from what was expected given overall species abundances. These results suggest that complex processes of competitive exclusion and coexistence help determine fungal community composition and that the consequences of these processes vary spatially. The presence of three fungal symbionts in different proportions and combinations across a wide range of environmental conditions may help explain the success of mountain pine beetle attacks across a broad geographic range.
Collapse
Affiliation(s)
- Amanda D Roe
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
13
|
Evans LM, Hofstetter RW, Ayres MP, Klepzig KD. Temperature alters the relative abundance and population growth rates of species within the Dendroctonus frontalis (Coleoptera: Curculionidae) community. ENVIRONMENTAL ENTOMOLOGY 2011; 40:824-834. [PMID: 22251683 DOI: 10.1603/en10208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Temperature has strong effects on metabolic processes of individuals and demographics of populations, but effects on ecological communities are not well known. Many economically and ecologically important pest species have obligate associations with other organisms; therefore, effects of temperature on these species might be mediated by strong interactions. The southern pine beetle (Dendroctonus frontalis Zimmermann) harbors a rich community of phoretic mites and fungi that are linked by many strong direct and indirect interactions, providing multiple pathways for temperature to affect the system. We tested the effects of temperature on this community by manipulating communities within naturally infested sections of pine trees. Direct effects of temperature on component species were conspicuous and sometimes predictable based on single-species physiology, but there were also strong indirect effects of temperature via alteration of species interactions that could not have been predicted based on autecological temperature responses. Climatic variation, including directional warming, will likely influence ecological systems through direct physiological effects as well as indirect effects through species interactions.
Collapse
Affiliation(s)
- L M Evans
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
14
|
Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems. Symbiosis 2011. [DOI: 10.1007/s13199-011-0119-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Hulcr J, Adams AS, Raffa K, Hofstetter RW, Klepzig KD, Currie CR. Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. MICROBIAL ECOLOGY 2011; 61:759-768. [PMID: 21249352 DOI: 10.1007/s00248-010-9797-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/18/2010] [Indexed: 05/30/2023]
Abstract
Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects.
Collapse
Affiliation(s)
- Jiri Hulcr
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
16
|
Six DL, Wingfield MJ. The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:255-72. [PMID: 20822444 DOI: 10.1146/annurev-ento-120709-144839] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The idea that phytopathogenic fungi associated with tree-killing bark beetles are critical for overwhelming tree defenses and incurring host tree mortality, herein called the classic paradigm (CP), has driven research on bark beetle-fungus symbiosis for decades. It has also strongly influenced our views of bark beetle ecology. We discuss fundamental flaws in the CP, including the lack of consistency of virulent fungal associates with tree-killing bark beetles, the lack of correspondence between fungal growth in the host tree and the development of symptoms associated with a successful attack, and the ubiquity of similar associations of fungi with bark beetles that do not kill trees. We suggest that, rather than playing a supporting role for the host beetle (tree killing), phytopathogenicity performs an important role for the fungi. In particular, phytopathogenicity may mediate competitive interactions among fungi and support survival and efficient resource capture in living, defensive trees.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, The University of Montana, Missoula, Montana 59812, USA.
| | | |
Collapse
|
17
|
ROE AMANDAD, RICE ADRIANNEV, COLTMAN DAVIDW, COOKE JANICEEK, SPERLING FELIXAH. Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 2010; 20:584-600. [DOI: 10.1111/j.1365-294x.2010.04953.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Klepzig KD, Adams AS, Handelsman J, Raffa KF. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. ENVIRONMENTAL ENTOMOLOGY 2009; 38:67-77. [PMID: 19791599 DOI: 10.1603/022.038.0109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological, evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host (macrosymbiont), such as direct or indirect nutrition, ability to counter the defenses of plant or animal hosts, protection from natural enemies, improved development and reproduction, and communication. Benefits to the microsymbiont (including a broad range of fungi, bacteria, mites, nematodes, etc.) often include transport, protection from antagonists, and protection from environmental extremes. Symbiotic relationships may be mutualistic, commensal, competitive, or parasitic. In many cases, individual relationships may include both beneficial and detrimental effects to each partner during various phases of their life histories or as environmental conditions change. The outcomes of insect-microbial interactions are often strongly mediated by other symbionts and by features of the external and internal environment. These outcomes can also have important effects on human well being and environmental quality, by affecting agriculture, human health, natural resources, and the impacts of invasive species. We argue that, for many systems, our understanding of symbiotic relationships will advance most rapidly where context dependency and multipartite membership are integrated into existing conceptual frameworks. Furthermore, the contribution of entomological studies to overall symbiosis theory will be greatest where preoccupation with strict definitions and artificial boundaries is minimized, and integration of emerging molecular and quantitative techniques is maximized. We highlight symbiotic relations involving bark beetles to illustrate examples of the above trends.
Collapse
Affiliation(s)
- K D Klepzig
- Southern Research Station, USDA Forest Service, 2500 Shreveport Highway, Pineville, LA 71360, USA.
| | | | | | | |
Collapse
|
19
|
Effects of water potential and solute on the growth and interactions of two fungal symbionts of the mountain pine beetle. ACTA ACUST UNITED AC 2008; 113:3-15. [PMID: 18640273 DOI: 10.1016/j.mycres.2008.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/11/2008] [Indexed: 11/20/2022]
Abstract
We investigated the effect of water potential (WP) on the growth of, and interaction between, two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma montium, associated with the mountain pine beetle (Dendroctonus ponderosae). The WP of malt extract agar was amended by adding potassium chloride (KCl) or sucrose. Growth of both fungi decreased with WP on KCl-amended media. Growth of G. clavigera also decreased with WP on sucrose-amended media, although growth was stimulated on these media compared to unamended treatments. Growth of O. montium remained relatively constant on sucrose-amended media, confounding the effect of WP on this species. Both fungi were able to colonize media occupied by the other species, but at a slower rate than on unoccupied media, indicating competition. In most treatments, G. clavigera grew faster than O. montium and colonized a greater area when the two fungi were inoculated concurrently but distant to one another on a Petri dish. However, when each fungus was inoculated adjacent to a 10-d-old well-established colony of the other species, O. montium colonized occupied media more effectively than G. clavigera considering the growth rate of each species alone. Thus, G. clavigera dominated primary (uncolonized) resources on most media, whereas O. montium was more effective in colonizing secondary (occupied) resources. The differential response of the two fungi to sucrose indicates that they may use different carbon sources, or use different carbon sources at different rates, in the tree. Fine-scale resource partitioning, differences in primary and secondary resource capture abilities, and the non-equilibrium dynamics in an attacked tree over time, could all act to promote the co-existence of two unit-restricted dispersers on a discontinuous resource.
Collapse
|
20
|
Lee S, Hamelin RC, Six DL, Breuil C. Genetic Diversity and the Presence of Two Distinct Groups in Ophiostoma clavigerum Associated with Dendroctonus ponderosae in British Columbia and the Northern Rocky Mountains. PHYTOPATHOLOGY 2007; 97:1177-1185. [PMID: 18944182 DOI: 10.1094/phyto-97-9-1177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The sapstaining fungal pathogen Ophiostoma clavigerum is associated with the mountain pine beetle (Dendroctonus ponderosae), which is currently the most destructive forest pest in North America. The genetic diversity of O. clavigerum populations collected from five sites in Canada and two sites in the United States was estimated with amplified fragment length polymorphism (AFLP) analysis. Genomic DNA from 170 O. clavigerum isolates was digested with EcoRI and PstI and amplified with six primer sets. A total of 469 AFLP markers consisting of 243 monomorphic and 226 polymorphic loci were scored. The overall genetic diversity of the O. clavigerum population was low (Hs = 0.0531) and the differentiation of the seven O. clavigerum populations was moderate (Phi = 0.143). Genetic distances among the populations were not significantly correlated with geographic distance (r = 0.3235, P = 0.074). Two genetically distinct groups in the O. clavigerum populations were shown by unique AFLP profiles and the unweighted pair group method with arithmetic averages. Further work to characterize biological differences between the two groups will be needed to confirm whether cryptic species are present in the O. clavigerum population.
Collapse
|