1
|
Madden AA, Epps MJ, Fukami T, Irwin RE, Sheppard J, Sorger DM, Dunn RR. The ecology of insect-yeast relationships and its relevance to human industry. Proc Biol Sci 2019; 285:rspb.2017.2733. [PMID: 29563264 DOI: 10.1098/rspb.2017.2733] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 01/03/2023] Open
Abstract
Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a 'dispersal-encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry.
Collapse
Affiliation(s)
- Anne A Madden
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA
| | - Mary Jane Epps
- Department of Biology, Mary Baldwin University, 101 East Frederick Street, Staunton, VA 24401, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA
| | - John Sheppard
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27606, USA
| | - D Magdalena Sorger
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA.,Research & Collections, North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
2
|
Chong JH, Hinson KR. A Comparison of Trap Types for Assessing Diversity of Scarabaeoidea on South Carolina Golf Courses. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2383-2396. [PMID: 26453727 DOI: 10.1093/jee/tov209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023]
Abstract
A 2-yr survey was conducted on golf courses in South Carolina to 1) document the species richness and seasonal activity of Scarabaeoidea; 2) assess any species compositional differences among three trap types (ultraviolet light, unbaited flight-intercept, and unbaited pitfall); and 3) identify any dominant taxa in each trap type. A total of 74,326 scarabaeoid beetles were captured, of which 77.4% were Aphodiinae (not identified to species). The remaining specimens belong to 104 species in 47 genera and 6 families. The most abundant species were Cyclocephala lurida Bland, Dyscinetus morator (F.), Euetheola humilis (Burmeister), Hybosorus illigeri Reiche, and Maladera castanea (Arrow). In all trap types, >90% of all specimens and taxa were collected between April and August. Ultraviolet light traps collected ∼94% of total specimens consisting of 83 taxa (of which 51 were unique to this trap type), whereas flight-intercept traps captured ∼2% of all specimens representing 53 taxa (18 of which were unique), and pitfall traps captured ∼4% of all specimens representing 15 taxa (no unique species; all species also captured by ultraviolet light traps). Indicator species analysis identified 2-3 and 10-13 taxa that were most frequently collected by flight-intercept and ultraviolet light traps, respectively. Flight-intercept traps complemented ultraviolet light traps by capturing more species of dung and carrion beetles and diurnal phytophagous scarab beetles. Results suggested that a similar survey for domestic or exotic scarabaeoid beetles in turfgrass systems should be conducted between April and August using ultraviolet light and flight-intercept traps at 13-58 sites.
Collapse
Affiliation(s)
- Juang-Horng Chong
- Clemson University, Pee Dee Research and Education Center, 2200 Pocket Rd., Florence, SC 29506.
| | - Kevin R Hinson
- Clemson University, Department of Agricultural and Environmental Sciences, 171 Poole Agricultural Center, Clemson, SC 29634
| |
Collapse
|
3
|
Semiochemistry of the Scarabaeoidea. J Chem Ecol 2014; 40:190-210. [PMID: 24474404 DOI: 10.1007/s10886-014-0377-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
The superfamily Scarabaeoidea comprises a large and diverse monophyletic group. Members share ancestral characteristics, but often exhibit considerable differences in their ecology, physiology, or mating strategies. A large number of species are regarded as pests of crop or amenity plants, while others are beneficial to humans and even may be extremely rare as a result of anthropogenic activities. A significant number of chemical ecology-based studies have been conducted with the Scarabaeoidea in order to characterize semiochemicals influencing their behavior, such as pheromones and plant-derived allelochemicals. These may be used either to control or preserve populations of the beetles, depending upon pest or beneficial status. This paper is a review of the role and identity of the semiochemicals of the Scarabaeoidea, with comments on possible future research and applied opportunities in the field of chemical ecology.
Collapse
|