1
|
Divyashri G, Krishna Murthy TP, Ragavan KV, Sumukh GM, Sudha LS, Nishka S, Himanshi G, Misriya N, Sharada B, Anjanapura Venkataramanaiah R. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 2023; 9:e20212. [PMID: 37809968 PMCID: PMC10559994 DOI: 10.1016/j.heliyon.2023.e20212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The dry method of coffee processing generates a significant amount of coffee husk, an agricultural waste for which currently there is a lack of profitable use, and their disposal constitutes a major environmental problem. Pectin was extracted from coffee husk using citric acid solution (pH 1.5) by microwave-assisted extraction method, followed by using ice-cold ethanol. The coffee husk pectin (CHP) with a yield of 40.2% was characterized using SEM, FT-IR, and XRD techniques. The CHP exhibited significant in-vitro antioxidant activity as measured by using 2,2-diphenyl-1-picrylhydrazyl; (IC50 value of 395.1 ± 0.42 μg/mL), ferrous reducing antioxidant capacity (A700 nm = 0.55 ± 0.08), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (42.02 ± 0.38%) and ascorbic acid auto-oxidation inhibition (92.01 ± 0.28%) assays. CHP demonstrated antibacterial activity against Escherichia coli and Bacillus cereus with an inhibition diameter of 20 ± 1.01 mm and 18 ± 0.84 mm, respectively. Interestingly, CHP showed a significant anti-inflammatory effect by negatively modulating the expressions of TNF-α and TGF- β in LPS-stimulated macrophage cell lines. Collectively, our findings suggest that the coffee husk is a potential source of commercial pectin, microwave-assisted extraction has a great potency on the commercial pectin extraction from the coffee husk and CHP demonstrates significant biological activity.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | | | | | | | - Lingam Sadananda Sudha
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Srikanth Nishka
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Gupta Himanshi
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Nafisa Misriya
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Bannappa Sharada
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Raghu Anjanapura Venkataramanaiah
- Faculty of Allied health Sciences, BLDE (Deemed-to-be-university), Vijaypura, 586 103, India
- Department of Food Chemistry, Faculty of Engineering and Technology, Jain Deemed-to-be University, Bengaluru, 562 112, Karnataka, India
| |
Collapse
|
2
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
3
|
Barreto Peixoto JA, Silva JF, Oliveira MBPP, Alves RC. Sustainability issues along the coffee chain: From the field to the cup. Compr Rev Food Sci Food Saf 2023; 22:287-332. [PMID: 36479852 DOI: 10.1111/1541-4337.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
The coffee industry is one of the most important commercial value chains worldwide. Nonetheless, it is also associated to several social, economic, and environmental concerns that impair its sustainability. The present review is focused on these main sustainability concerns from the field to the coffee cup, as well as on the strategies that are being developed and/or implemented to attain sustainability and circular economy principles in the different chain segments. In this context, distinct approaches have been applied, such as sustainable certifications (e.g., voluntary sustainability standards), corporate sustainability initiatives, direct trade, relationship coffee concepts, geographical indication, legislations, waste management, and byproducts valorization, among others. These strategies are addressed and discussed throughout this review, as well as their recognized advantages and limitations. Overall, there is still a long way to go to attain the much-desired sustainability in the coffee chain, being essential to join the efforts of all actors and entities directly or indirectly involved, namely, producers, retailers, roasters, governments, educational institutions (such as universities and scientific research institutes), and organizations.
Collapse
Affiliation(s)
- Juliana A Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana F Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Duarte Neto JMW, Wanderley MCDA, da Silva TAF, Marques DAV, da Silva GR, Gurgel JF, Oliveira JDP, Porto ALF. Bacillus thuringiensis endotoxin production: a systematic review of the past 10 years. World J Microbiol Biotechnol 2020; 36:128. [PMID: 32712871 DOI: 10.1007/s11274-020-02904-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Bacillus thuringiensis (Bt) is one of the most promising biological control agents used commercially. Its products can contribute to reducing ecological and environmental problems associated with the use of chemical pesticides. Among the limiting factors of using Bt as bioinsecticide are the costs and ensuring its biological activity, which may vary according to the strain and culture conditions. This systematic review aimed to collect state-of-the-art information on the production of Bt endotoxins and to score the methodological feasibility of the data obtained, thus highlighting possible incoherencies. In order to consolidate recent findings and guide future studies, a total of 47 original articles from the last 10 years was analysed, with special attention being given to corroborating data, identifying inconsistencies and suggesting future adjustments so as to increase data reliability. With a maximum score of 8 points, three production parameters were classified on the following scale: preferable (score: 2), adequate (score: 1) and inadequate (score: 0), and another two parameter were classified as adequate (score: 1) or inadequate (score: 0). No article scored more than 6 out of the maximum of 8, thus reflecting the need for more detailed studies regarding Bt endotoxin production. The lack of standardization of methods and units of measurement also have made a comparison of results and an overall analysis difficult. Standards are suggested in the present study. The inclusion of bioassays and quantifying toxin via alkaline dilution are strongly recommended for studies of this nature, along with LC50 expressed in mg/L. Sixteen articles (34%) did not use either of these suggested methods, which indicates the need for further supporting studies. These findings reinforce the need for robust studies in this area, which could include the development of more affordable and effective bioinsecticides, thus increasing their competitiveness against insecticides derived from unsustainable sources.
Collapse
Affiliation(s)
- José Manoel W Duarte Neto
- Biotechnology Laboratory, Agronomic Institute of Pernambuco, IPA, Av. General San Martin, Recife, PE, 137150761-000, Brazil.,Bioactives Technology Laboratory (LABTECBIO), Animal Morphology and Physiology Department, Federal Rural University of Pernambuco, UFRPE, Av. Dom Manoel de Medeiros, n/nr, Recife, PE, 52171-900, Brazil.,Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, UFPE, Av. Prof. Moraes Lins Do Rego, n/nr, Recife, PE, 50670-901, Brazil
| | - Maria Carolina de A Wanderley
- Bioactives Technology Laboratory (LABTECBIO), Animal Morphology and Physiology Department, Federal Rural University of Pernambuco, UFRPE, Av. Dom Manoel de Medeiros, n/nr, Recife, PE, 52171-900, Brazil.,Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, UFPE, Av. Prof. Moraes Lins Do Rego, n/nr, Recife, PE, 50670-901, Brazil
| | - Túlio Alexandre F da Silva
- Bioactives Technology Laboratory (LABTECBIO), Animal Morphology and Physiology Department, Federal Rural University of Pernambuco, UFRPE, Av. Dom Manoel de Medeiros, n/nr, Recife, PE, 52171-900, Brazil
| | - Daniela A Viana Marques
- University of Pernambuco (UPE), Serra Talhada Campus, Av. Afonso Magalhães, n/nr, Serra Talhada, PE, Brazil
| | - Gilvanda R da Silva
- Biotechnology Laboratory, Agronomic Institute of Pernambuco, IPA, Av. General San Martin, Recife, PE, 137150761-000, Brazil
| | - Josimar Fernandes Gurgel
- Biotechnology Laboratory, Agronomic Institute of Pernambuco, IPA, Av. General San Martin, Recife, PE, 137150761-000, Brazil
| | - José de Paula Oliveira
- Biotechnology Laboratory, Agronomic Institute of Pernambuco, IPA, Av. General San Martin, Recife, PE, 137150761-000, Brazil
| | - Ana Lúcia F Porto
- Biotechnology Laboratory, Agronomic Institute of Pernambuco, IPA, Av. General San Martin, Recife, PE, 137150761-000, Brazil. .,Bioactives Technology Laboratory (LABTECBIO), Animal Morphology and Physiology Department, Federal Rural University of Pernambuco, UFRPE, Av. Dom Manoel de Medeiros, n/nr, Recife, PE, 52171-900, Brazil. .,Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, UFPE, Av. Prof. Moraes Lins Do Rego, n/nr, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
5
|
Devidas PC, Pandit BH, Vitthalrao PS. Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti. ScientificWorldJournal 2014; 2014:273030. [PMID: 24592157 PMCID: PMC3926252 DOI: 10.1155/2014/273030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Production of indigenous isolate Bacillus thuringiensis sv2 (Bt sv2) was checked on conventional and nonconventional carbon and nitrogen sources in shake flasks. The effects on the production of biomass, toxin production, and spore formation capability of mosquito toxic strain were determined. Toxicity differs within the same strain depending on the growth medium. Bt sv2 produced with pigeon pea and soya bean flour were found highly effective with LC50 < 4 ppm against larvae of Aedes aegypti. These results were comparable with bacteria produced from Luria broth as a reference medium. Cost-effective analyses have revealed that production of biopesticide from test media is highly economical. The cost of production of Bt sv2 with soya bean flour was significantly reduced by 23-fold. The use of nonconventional sources has yielded a new knowledge in this area as the process development aspects of biomass production have been neglected as an area of research. These studies are very important from the point of media optimization for economic production of Bacillus thuringiensis based insecticides in mosquito control programmes.
Collapse
Affiliation(s)
| | - Borase Hemant Pandit
- School of Life Sciences, North Maharashtra University, P.O. Box 80, Jalgaon, Maharashtra 425001, India
| | - Patil Satish Vitthalrao
- School of Life Sciences, North Maharashtra University, P.O. Box 80, Jalgaon, Maharashtra 425001, India
- North Maharashtra Microbial Culture Collection Centre (NMCC), North Maharashtra University, P.O. Box 80, Jalgaon, Maharashtra 425001, India
| |
Collapse
|