1
|
Schultz DL, Selberherr E, Stouthamer CM, Doremus MR, Kelly SE, Hunter MS, Schmitz-Esser S. Sex-based de novo transcriptome assemblies of the parasitoid wasp Encarsia suzannae, a host of the manipulative heritable symbiont Cardinium hertigii. GIGABYTE 2022; 2022:gigabyte68. [PMID: 36824530 PMCID: PMC9693781 DOI: 10.46471/gigabyte.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Parasitoid wasps in the genus Encarsia are commonly used as biological pest control agents of whiteflies and armored scale insects in greenhouses or the field. They are also hosts of the bacterial endosymbiont Cardinium hertigii, which can cause reproductive manipulation phenotypes, including parthenogenesis, feminization, and cytoplasmic incompatibility (the last is mainly studied in Encarsia suzannae). Despite their biological and economic importance, there are no published Encarsia genomes and only one public transcriptome. Here, we applied a mapping-and-removal approach to eliminate known contaminants from previously-obtained Illumina sequencing data. We generated de novo transcriptome assemblies for both female and male E. suzannae which contain 45,986 and 54,762 final coding sequences, respectively. Benchmarking Single-Copy Orthologs results indicate both assemblies are highly complete. Preliminary analyses revealed the presence of homologs of sex-determination genes characterized in other insects and putative venom proteins. Our male and female transcriptomes will be valuable tools to better understand the biology of Encarsia and their evolutionary relatives, particularly in studies involving insects of only one sex.
Collapse
Affiliation(s)
- Dylan L. Schultz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | - Matthew R. Doremus
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Suzanne E. Kelly
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Martha S. Hunter
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Milenovic M, Ghanim M, Hoffmann L, Rapisarda C. Whitefly endosymbionts: IPM opportunity or tilting at windmills? JOURNAL OF PEST SCIENCE 2021; 95:543-566. [PMID: 34744550 PMCID: PMC8562023 DOI: 10.1007/s10340-021-01451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/23/2023]
Abstract
Whiteflies are sap-sucking insects responsible for high economic losses. They colonize hundreds of plant species and cause direct feeding damage and indirect damage through transmission of devastating viruses. Modern agriculture has seen a history of invasive whitefly species and populations that expand to novel regions, bringing along fierce viruses. Control efforts are hindered by fast virus transmission, insecticide-resistant populations, and a wide host range which permits large natural reservoirs for whiteflies. Augmentative biocontrol by parasitoids while effective in suppressing high population densities in greenhouses falls short when it comes to preventing virus transmission and is ineffective in the open field. A potential source of much needed novel control strategies lays within a diverse community of whitefly endosymbionts. The idea to exploit endosymbionts for whitefly control is as old as identification of these bacteria, yet it still has not come to fruition. We review where our knowledge stands on the aspects of whitefly endosymbiont evolution, biology, metabolism, multitrophic interactions, and population dynamics. We show how these insights are bringing us closer to the goal of better integrated pest management strategies. Combining most up to date understanding of whitefly-endosymbiont interactions and recent technological advances, we discuss possibilities of disrupting and manipulating whitefly endosymbionts, as well as using them for pest control.
Collapse
Affiliation(s)
- Milan Milenovic
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| | - Murad Ghanim
- Department of Entomology, Volcani Center, ARO, HaMaccabim Road 68, PO Box 15159, 7528809 Rishon Le Tsiyon, Israel
| | - Lucien Hoffmann
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
3
|
Phylogeny and Strain Typing of Wolbachia from Yamatotettix flavovittatus Matsumura Leafhoppers. Curr Microbiol 2021; 78:1367-1376. [PMID: 33646378 DOI: 10.1007/s00284-021-02405-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Wolbachia is a maternally inherited bacterium of insects that can alter the reproduction, biology, and fitness of the hosts. It was detected in natural populations of the Yamatotettix flavovittatus Matsumura leafhoppers, the vector of phytoplasma, which is responsible for sugarcane white leaf disease. Wolbachia infection prolongs the longevity of female leafhoppers and promotes a strong reproductive incompatibility; importantly, highly maternal transmission rate was observed. However, limited data on the diversity or strain typing of Wolbachia in Y. flavovittatus are available. We aimed here to detect the presence of Wolbachia in different populations by amplification of the wsp gene, which was then sequenced. Multilocus sequence typing (MLST) was also performed to explore the diversity of the Wolbachia strains. Based on the wsp sequences, Wolbachia in the Y. flavovittatus leafhoppers belonged to supergroup B, and formed a distinct evolutionary lineage; therefore, we designated this new specific strain as wYfla. The MLST profiles revealed ten potential new sequence types (STs) in different leafhopper populations. Multiple STs were detected in individual leafhoppers, among which the ST-wYfla1 strain was predominant. Furthermore, we obtained congruent results for the phylogenetic analyses using the wsp gene and MLST loci. To the best of our knowledge, this is the first study characterizing Wolbachia strains in Y. flavovittatus. Our results reveal a novel strain and multiple STs of Wolbachia, and these data may prove useful in the exploitation of Wolbachia as a biological Y. flavovittatus control agent.
Collapse
|