1
|
Evans MV, Drake JM, Jones L, Murdock CC. Assessing temperature-dependent competition between two invasive mosquito species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02334. [PMID: 33772946 DOI: 10.1002/eap.2334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Invasive mosquitoes are expanding their ranges into new geographic areas and interacting with resident mosquito species. Understanding how novel interactions can affect mosquito population dynamics is necessary to predict transmission risk at invasion fronts. Mosquito life-history traits are extremely sensitive to temperature, and this can lead to temperature-dependent competition between competing invasive mosquito species. We explored temperature-dependent competition between Aedes aegypti and Anopheles stephensi, two invasive mosquito species whose distributions overlap in India, the Middle East, and North Africa, where An. stephensi is currently expanding into the endemic range of Ae. aegypti. We followed mosquito cohorts raised at different intraspecific and interspecific densities across five temperatures (16-32°C) to measure traits relevant for population growth and to estimate species' per capita growth rates. We then used these growth rates to derive each species' competitive ability at each temperature. We find strong evidence for asymmetric competition at all temperatures, with Ae. aegypti emerging as the dominant competitor. This was primarily because of differences in larval survival and development times across all temperatures that resulted in a higher estimated intrinsic growth rate and competitive tolerance estimate for Ae. aegypti compared to An. stephensi. The spread of An. stephensi into the African continent could lead to urban transmission of malaria, an otherwise rural disease, increasing the human population at risk and complicating malaria elimination efforts. Competition has resulted in habitat segregation of other invasive mosquito species, and our results suggest that it may play a role in determining the distribution of An. stephensi across its invasive range.
Collapse
Affiliation(s)
- Michelle V Evans
- Odum School of Ecology, University of Georgia, 140 E Green St., Athens, Georgia, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, 203 DW Brooks Dr, Athens, Georgia, 30602, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, 140 E Green St., Athens, Georgia, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, 203 DW Brooks Dr, Athens, Georgia, 30602, USA
| | - Lindsey Jones
- Department of Biology, Albany State University, 504 College Dr., Albany, Georgia, 31705, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Dr, Athens, Georgia, 30602, USA
- Department of Entomology, College of Agricultural and Life Sciences, Cornell University, 2126 Comstock Hall, Ithaca, New York, 14853, USA
| |
Collapse
|
2
|
Jong ZW, Kassim NFA, Naziri MA, Webb CE. The effect of inbreeding and larval feeding regime on immature development of Aedes albopictus. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:105-112. [PMID: 28504428 DOI: 10.1111/jvec.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/27/2016] [Indexed: 06/07/2023]
Abstract
The fundamental approach to the biological control of Aedes albopictus requires the mass rearing of mosquitoes and the release of highly competitive adults in the field. As the fitness of adults is highly dependent on the development of immatures, we aimed to identify the minimum feeding regime required to produce viable and competitive adults by evaluating three response parameters: development duration, immature mortality, and adult wing length. Our study suggests at least 0.60 mg/larva/day of larval diet composed of dog food, dried beef liver, yeast, and milk powder in a weight ratio of 2:1:1:1 is required to maximize adult fitness. With standardized protocols in mass rearing, intensive studies can be readily conducted on mosquito colonies to facilitate comparisons across laboratories. This study also evaluated the differences in response of laboratory and field strains under different feeding regimes. We found that strain alone did not exert substantial effects on all response parameters. However, the field strain exhibited significantly lower immature mortality than the laboratory strain under the minimum feeding regime. Females and males of the laboratory strain had longer wing lengths under nutritional constraint due to the higher mortality that resulted in reduced interactions with the remaining larvae. Meanwhile, the field strain exhibited heterogeneous duration of immature development compared with the laboratory strain. The disparities demonstrated by the two strains in this study suggest the effect of inbreeding surfaced after a long term of laboratory colonization. Despite the trade-offs resulting from laboratory colonization, the competitiveness of the laboratory strain of Ae. albopictus is comparable to the field strain, provided the larvae are fed optimally.
Collapse
Affiliation(s)
- Zheng-Wei Jong
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Nur Faeza A Kassim
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Muhammad Aiman Naziri
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Cameron E Webb
- Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, Australia
- Marie Bashir Institute of Infectious Disease and Biosecurity, University of Sydney, Australia
| |
Collapse
|
3
|
Guedes RNC, Smagghe G, Stark JD, Desneux N. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs. ANNUAL REVIEW OF ENTOMOLOGY 2015; 61:43-62. [PMID: 26473315 DOI: 10.1146/annurev-ento-010715-023646] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carson's Silent Spring, pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.
Collapse
Affiliation(s)
- R N C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - G Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - J D Stark
- Puyallup Research and Extension Center, Washington State University, Puyallup, Washington 98371-4900;
| | - N Desneux
- French National Institute for Agricultural Research (INRA), Université Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France;
| |
Collapse
|
4
|
Cordeiro EMG, Corrêa AS, Guedes RNC. Insecticide-mediated shift in ecological dominance between two competing species of grain beetles. PLoS One 2014; 9:e100990. [PMID: 24959673 PMCID: PMC4069159 DOI: 10.1371/journal.pone.0100990] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/02/2014] [Indexed: 11/21/2022] Open
Abstract
Competition is a driving force regulating communities often considered an intermittent phenomenon, difficult to verify and potentially driven by environmental disturbances. Insecticides are agents of environmental disturbance that can potentially change ecological relationships and competitive outcomes, but this subject has seldom been examined. As the co-existing cereal grain beetle species Sitophilus zeamais Motschulsky and Rhyzopertha dominica F. share a common realized niche, directly competing for the same resources, they were used as models in our study. Intraspecific competition experiments were performed with increasing insect densities and insecticide doses in additive and replacement series using various density combinations of both beetle species maintained on insecticide-free or -sprayed grains. Insecticide-mediated release from competitive stress was not observed in our study of intraspecific competition in grain beetles. The insecticide enhanced the effect of insect density, particularly for the maize weevil S. zeamais, further impairing population growth at high densities. Therefore, insecticide susceptibility increased with intraspecific competition favoring insecticide efficacy. However, the effect of insecticide exposure on competitive interaction extends beyond intraspecific competition, affecting interspecific competition as well. Sitophilus zeamais was the dominant species when in interspecific competition prevailing in natural conditions (without insecticide exposure), but the dominance and species prevalence shifted from S. zeamais to R. dominica under insecticide exposure. Therefore, high conspecific densities favored insecticide efficacy, but the strength of the relationship differs with the species. In addition, the insecticide mediated a shift in species dominance and competition outcome indicating that insecticides are relevant mediators of species interaction, potentially influencing community composition and raising management concerns as potential cause of secondary pest outbreaks.
Collapse
Affiliation(s)
| | - Alberto S. Corrêa
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Entomologia e Acarologia Agrícola, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Raul Narciso C. Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
5
|
Gimonneau G, Brossette L, Mamaï W, Dabiré RK, Simard F. Larval competition between An. coluzzii and An. gambiae in insectary and semi-field conditions in Burkina Faso. Acta Trop 2014; 130:155-61. [PMID: 24269743 DOI: 10.1016/j.actatropica.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/01/2013] [Accepted: 11/09/2013] [Indexed: 12/20/2022]
Abstract
Competition in mosquito larvae is common and different ecological context could change competitive advantage between species. Here, larval competition between the widely sympatric African malaria mosquitoes, Anopheles coluzzii and Anopheles gambiae were investigated in controlled insectary conditions using individuals from laboratory colonies and under ambient conditions using wild mosquitoes in a semi-field enclosure in western Burkina Faso. Larvae of both species were reared in trays at the same larval density and under the same feeding regimen in either single-species or mixed-species populations at varying species ratios reflecting 0%, 25%, 50% and 75% of competitor species. In the insectaries, where environmental variations are controlled, larvae of the An. coluzzii colony developed faster and with lower mortality than larvae of the An. gambiae colony (8.8±0.1 days and 21±3% mortality vs. 9.5±0.1 days and 32±3% mortality, respectively). Although there was no significant effect of competition on these phenotypic traits in any species, there was a significant trend for higher fitness of the An. coluzzii colony when competing with An. gambiae under laboratory conditions (i.e. lower development time and increased wing length at emergence, Cuzik's tests, P<0.05). In semi-field experiments, competition affected the life history traits of both species in a different way. Larvae of An. gambiae tended to reduce development time when in competition with An. coluzzii (Cuzick's test, P=0.002) with no impact either on mortality or size at emergence. On the other hand, An. coluzzii showed a significant trend for reduced larval mortality with increasing competition pressure (Cuzick's test, P=0.037) and production of smaller females when grown together with An. gambiae (Cuzick's test, P=0.002). Our results hence revealed that competitive interactions between larvae of the two species are context dependent. They further call for caution when exploring ecological processes using inbred laboratory colonies in this system of utmost medical importance.
Collapse
Affiliation(s)
- Geoffrey Gimonneau
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| | - Lou Brossette
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France.
| | - Wadaka Mamaï
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| | - Frédéric Simard
- Institut de Recherche pour le Développement (IRD), UMR 224-CNRS 5290-Université de Montpellier 1-Université de Montpellier 2 MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Genetique, Evolution et Contrôle), team BEES (Biology, Ecology and Evolution of vector Systems), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545 Bobo Dioulasso, Burkina Faso.
| |
Collapse
|