1
|
Rogers R, Polito MJ, de Jesús Crespo R. Tree canopy cover affects basal resources and nutrient profiles of Aedes and Culex larvae in cemetery vases in New Orleans, Louisiana, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:500-510. [PMID: 36920104 DOI: 10.1093/jme/tjad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
Cemetery vases are important habitat for vector mosquito production, yet there is limited understanding on their food web dynamics and how they vary across environmental gradients. Tree cover is one factor that varies widely across cemeteries, and influence food webs by means of detrital inputs, temperature mediation, and light availability. Such information can be important for determining mosquito adult body size, fecundity, and competition outcomes, all of which may influence mosquito population and disease risk. This study evaluates the relationship between tree canopy cover and indicators of basal resources for Aede aegypti (L.), Aedes albopictuss (Skuse), and Culex quinquefasciatus (Say) larvae, such as stable isotopes (δ13C and δ15N) and nutrient stoichiometry in cemeteries of New Orleans, Louisiana (USA). Stable isotope values suggest that larvae feed directly on the Particulate Organic Matter (POM) suspended in the vase's water, and that POM composition influence the nutrient profiles of mosquito larvae. The POM of open canopy vases had higher δ13C values, than that of closed canopy vases indicating differences in relative proportion of basal carbon sources, with open canopy POM having a lower proportion of allochthonous carbon, and a higher proportion of authoctonous carbon. Accordingly, mosquito larvae collected from open canopy vases had higher δ13C values, and higher C:N than larvae from closed canopy vases. The results of this study show a shift in food web dynamics driven by canopy cover in cemetery vases that directly influence the nutrient profiles of mosquito larvae. The implications for mosquito ecology, and vector management are discussed.
Collapse
Affiliation(s)
- Rachel Rogers
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, USA
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
2
|
Krupa E, Henon N, Mathieu B. Diapause characterisation and seasonality of Aedes japonicus japonicus (Diptera, Culicidae) in the northeast of France. ACTA ACUST UNITED AC 2021; 28:45. [PMID: 34037519 PMCID: PMC8152802 DOI: 10.1051/parasite/2021045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022]
Abstract
The invasive mosquito Aedes japonicus japonicus (Theobald, 1901) settled in 2013 in the Alsace region, in the northeast of France. In this temperate area, some mosquito species use diapause to survive cold winter temperatures and thereby foster settlement and dispersal. This study reports diapause and its seasonality in a field population of Ae. japonicus in the northeast of France. For two years, eggs were collected from May to the beginning of November. They were most abundant in summer and became sparse in late October. Diapause eggs were determined by the presence of a fully developed embryo in unhatched eggs after repeated immersions. Our study showed effective diapause of Ae. japonicus in this part of France. At the start of the egg-laying period (week 20), we found up to 10% of eggs under diapause, and this rate reached 100% in October. The 50% cut-off of diapause incidence was determined by the end of summer, leading to an average calculated maternal critical photoperiod of 13 h 23 min. Interestingly, diapause was shown to occur in part of the eggs even at the earliest period of the two seasons, i.e. in May of each year. Even though we observed that the size of eggs was positively correlated with diapause incidence, morphology cannot be used as the unique predictive indicator of diapause status due to overlapping measurements between diapausing and non-diapausing eggs. This study provides new knowledge on diapause characterisation and invasive traits of Ae. japonicus.
Collapse
Affiliation(s)
- Eva Krupa
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Nicolas Henon
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Bruno Mathieu
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| |
Collapse
|
3
|
Yee DA. What Can Larval Ecology Tell Us About the Success of Aedes albopictus (Diptera: Culicidae) Within the United States? JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1002-1012. [PMID: 27354437 DOI: 10.1093/jme/tjw046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/17/2016] [Indexed: 06/06/2023]
Abstract
Aedes albopictus (Skuse) was introduced in the United States approximately 30 years ago, and since has become an important pest and vector of disease. This species uses small water-holding containers as sites for oviposition and larval development. Larvae can consume a wide range of detritus-based energy sources, including microorganisms, and as such the type and quantity of detritus that enters these systems have been studied for the effects on adult populations. This review examines the documented responses of Ae. albopictus to different larval environments within the United States, and some of its unique ecology that may lead to a better understanding of its spread and success. Field surveys generally find larvae in shaded containers with high amounts of organic detritus. Larvae have higher survival and population growth under high amounts of detritus and microorganisms, but they also can outcompete other species when nutrients are limiting. Allocation of time to feeding by larvae is greater and more focused compared with resident species. These latter two points also may explain differences in carbon and nitrogen composition (nutrient stoichiometry), which point to a lower need for nitrogen. Combined, these facts suggest that the Ae. albopictus is a species with a relatively wide niche that had been able to exploit container habitats in the United States better than resident species. After 30 yr of research, only a narrow range of detritus types and environmental conditions have been examined. Data on factors affecting the production of adults and its spread and apparent success are still needed.
Collapse
Affiliation(s)
- Donald A Yee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, 39460
| |
Collapse
|
4
|
Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, Hendrickx G, Zeller H, Van Bortel W, Schaffner F. An entomological review of invasive mosquitoes in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:637-63. [PMID: 25804287 DOI: 10.1017/s0007485315000103] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Among the invasive mosquitoes registered all over the world, Aedes species are particularly frequent and important. As several of them are potential vectors of disease, they present significant health concerns for 21st century Europe. Five species have established in mainland Europe, with two (Aedes albopictus and Aedes japonicus) becoming widespread and two (Ae. albopictus and Aedes aegypti) implicated in disease transmission to humans in Europe. The routes of importation and spread are often enigmatic, the ability to adapt to local environments and climates are rapid, and the biting nuisance and vector potential are both an ecomonic and public health concern. Europeans are used to cases of dengue and chikungunya in travellers returning from the tropics, but the threat to health and tourism in mainland Europe is substantive. Coupled to that are the emerging issues in the European overseas territorities and this paper is the first to consider the impacts in the remoter outposts of Europe. If entomologists and public health authorities are to address the spread of these mosquitoes and mitigate their health risks they must first be prepared to share information to better understand their biology and ecology, and share data on their distribution and control successes. This paper focusses in greater detail on the entomological and ecological aspects of these mosquitoes to assist with the risk assessment process, bringing together a large amount of information gathered through the ECDC VBORNET project.
Collapse
Affiliation(s)
- J M Medlock
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - K M Hansford
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - V Versteirt
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| | - B Cull
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - H Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health,Südufer 10,17493 Greifswald - Insel Riems,Germany
| | - D Fontenille
- Centre National d'Expertise sur les Vecteurs (CNEV), Institut de recherche pour le développement (IRD), UMR MIVEGEC,BP 64501,34394 Montpellier,France
| | - G Hendrickx
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| | - H Zeller
- Emerging and Vector-borne Diseases, European Centre for Disease Prevention and Control,Tomtebodavägen 11A,17183 Stockholm,Sweden
| | - W Van Bortel
- Emerging and Vector-borne Diseases, European Centre for Disease Prevention and Control,Tomtebodavägen 11A,17183 Stockholm,Sweden
| | - F Schaffner
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| |
Collapse
|
5
|
Yee DA, Abuzeineh AA, Ezeakacha NF, Schelble SS, Glasgow WC, Flanagan SD, Skiff JJ, Reeves A, Kuehn K. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:394-407. [PMID: 26334813 PMCID: PMC4581486 DOI: 10.1093/jme/tjv028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/21/2015] [Indexed: 05/18/2023]
Abstract
Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations.
Collapse
Affiliation(s)
- Donald A Yee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406.
| | - Alisa A Abuzeineh
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406. Present address: The Oliverian School, 28 Becket Dr., Pike, NH 03780
| | - Nnaemeka F Ezeakacha
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - Stephanie S Schelble
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - William C Glasgow
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - Stephen D Flanagan
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - Jeffrey J Skiff
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - Ashton Reeves
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | - Kevin Kuehn
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| |
Collapse
|
6
|
Kaufman MG, Fonseca DM. Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:31-49. [PMID: 24397520 PMCID: PMC4106299 DOI: 10.1146/annurev-ento-011613-162012] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii.
Collapse
Affiliation(s)
- Michael G. Kaufman
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|