1
|
Using Wavelet Analysis to Examine Long-Term Variability of Phytoplankton Biomass in the Tropical, Saline Lake Alchichica, Mexico. WATER 2022. [DOI: 10.3390/w14091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The phytoplankton biomass (chlorophyll-a, Chl-a) is directly related to the total production of lakes. Chl-a in temperate lakes oscillates on an annual scale. However, Chl-a oscillations in tropical lakes have hardly been documented, particularly over multiple years. Here, we described the periodicity of the Chl-a by performing a continuous wavelet analysis of 21 years (1998–2018), monthly Chl-a data from tropical, saline Lake Alchichica, Mexico. Parallel wavelet analyses were made on environmental time series (i.e., euphotic zone, mixed layer, temperature, dissolved oxygen concentration, dissolved inorganic nitrogen, soluble reactive phosphorus, soluble reactive silica). Throughout the time series, the wavelet transforms identified a regular and predictable annual cycle of the Chl-a associated with the warm-monomictic thermal-mixing pattern, the variability of the annual Chl-a cycle, and the presence of other cyclicities, 2-year and ~4–5 years, associated with external forcing agents (e.g., North Pacific Oscillation). The water quality variables display a recurrent annual cycle. At the same time, the trophic variables (nutrient concentration) showed the same cyclicity as Chl-a (1-year, 2-year, and 4-year), suggesting the external forcing agents promote Chl-a augment through nutrient increase made available from stronger, deeper, mixing periods.
Collapse
|
2
|
Fermani P, Metz S, Balagué V, Descy JP, Morana C, Logares R, Massana R, Sarmento H. Microbial eukaryotes assemblages and potential novel diversity in four tropical East-African Great Lakes. FEMS Microbiol Ecol 2021; 97:6335480. [PMID: 34338764 DOI: 10.1093/femsec/fiab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
East-African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components, however protistan diversity is barely known. We investigated the community composition of small eukaryotes (< 10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene. Moreover, in the meromictic Lake Kivu, two stations were vertically studied. We found high protistan diversity distributed in 779 operational taxonomic units (OTUs), spanning in eleven high-rank lineages, being Alveolata (31%), Opisthokonta (20%) and Stramenopiles (17%) the most represented supergroups. Surface protistan assemblage were associated to conductivity and productivity gradients; whereas depth, had a strong effect on protistan community in Kivu, with higher contribution of heterotrophic organisms. Approximately 40% of OTUs had low similarity (< 90%) with reported sequences in public databases, these were mostly coming from deep anoxic waters of Kivu, suggesting a high extent of novel diversity. We also detected several taxa so far considered exclusive of marine ecosystems. Our results unveiled a complex and largely undescribed protistan community, in which several lineages have adapted to different niches after crossing the salinity boundary.
Collapse
Affiliation(s)
- Paulina Fermani
- Laboratorio de Ecología Acuática. Instituto Tecnológico de Chascomús (UNSAM-CONICET) Chascomús, Buenos Aires, Argentina
| | - Sebastián Metz
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Vanessa Balagué
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | | | - Cédric Morana
- Unit of Chemical Oceanography, University of Liège, Liège, Belgium
| | - Ramiro Logares
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Hugo Sarmento
- Departamento de Hidrobiologia (DHb), Universidade Federal de São Carlos, São Carlos - SP, Brazil
| |
Collapse
|
3
|
Bauersachs T, Russell JM, Evans TW, Schwalb A, Schwark L. A heterocyte glycolipid-based calibration to reconstruct past continental climate change. Nat Commun 2021; 12:2406. [PMID: 33893318 PMCID: PMC8065054 DOI: 10.1038/s41467-021-22739-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/26/2021] [Indexed: 11/15/2022] Open
Abstract
Understanding Earth’s response to climate forcing in the geological past is essential to reliably predict future climate change. The reconstruction of continental climates, however, is hampered by the scarcity of universally applicable temperature proxies. Here, we show that heterocyte glycolipids (HGs) of diazotrophic heterocytous cyanobacteria occur ubiquitously in equatorial East African lakes as well as polar to tropical freshwater environments. The relative abundance of HG26 diols and keto-ols, quantified by the heterocyte diol index (HDI26), is significantly correlated with surface water temperature (SWT). The first application of the HDI26 to a ~37,000 year-long sediment record from Lake Tanganyika provides evidence for a ~4.1 °C warming in tropical East Africa from the last glacial to the beginning of the industrial period. Given the worldwide distribution of HGs in lake sediments, the HDI26 may allow reconstructing SWT variations in polar to tropical freshwater environments and thereby quantifying past continental climate change. Understanding the past is necessary to comprehend Earth’s response to present climate change, but past climate reconstruction is hampered by a lack of temperature proxies. Here the authors develop the HDI26, a proxy using cyanobacterial glycolipids to reconstruct water temperatures of lakes worldwide.
Collapse
Affiliation(s)
| | | | - Thomas W Evans
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Antje Schwalb
- Technische Universität Braunschweig, Braunschweig, Germany
| | - Lorenz Schwark
- Christian-Albrechts-University, Kiel, Germany.,Curtin University, Bentley, WA, Australia
| |
Collapse
|
4
|
Kimambo ON, Gumbo JR, Chikoore H. The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. Heliyon 2019; 5:e01312. [PMID: 30899834 PMCID: PMC6407083 DOI: 10.1016/j.heliyon.2019.e01312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022] Open
Abstract
Cyanobacteria (blue-green algae) are photosynthetic bacteria that under favorable environmental conditions produce secondary metabolites (cyanotoxins) which are harmful to the environment, including humans. The mass proliferation of harmful cyanobacteria is termed CyanoHABs. CyanoHABs can adapt to different climatic fluctuations, therefore, understanding their dynamics in freshwater systems is crucial. Variation in climatic and hydrological processes, changing land use and economic growth all influence the occurrence and distribution of CyanoHABs. There have been inadequate CyanoHAB studies at local scales, therefore their occurrence and dynamics cannot be generalized. This study reviews and synthesizes cases of CysnoHAB occurrence, magnitude, and timing and how these are linked with climatic and hydrological variations in the United Republic of Tanzania. In this study, a scoping review approach was adopted. Research articles, reports, and databases were consulted. The most common species of toxin-producing cyanobacteria were identified in different water bodies in Tanzania, as well as the record of mass fatality of birds (Lesser Flamingo) in Lake Manyara, which in almost all cases occurred during dry years. While previous studies on CyanoHAB dynamics and their links to climate, hydrological, and environmental changes have not been undertaken in Tanzania, there are studies in Lake Victoria and Tanganyika. Therefore, there should be an immediate response from water users, managers, researchers, and water authorities to address and actively engage in monitoring and managing the risks associated with CyanoHABs in Tanzania.
Collapse
Affiliation(s)
- Offoro N Kimambo
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Thohoyandou, South Africa
| | - Jabulani R Gumbo
- Department of Hydrology and Water Resources, School of Environmental Sciences, University of Venda, Thohoyandou, South Africa
| | - Hector Chikoore
- Department of Geography and Geo-Information Sciences, School of Environmental Sciences, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
5
|
Ávila MP, Staehr PA, Barbosa FAR, Chartone-Souza E, Nascimento AMA. Seasonality of freshwater bacterioplankton diversity in two tropical shallow lakes from the Brazilian Atlantic Forest. FEMS Microbiol Ecol 2016; 93:fiw218. [DOI: 10.1093/femsec/fiw218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|
6
|
Straubinger-Gansberger N, Kaggwa MN, Schagerl M. Phytoplankton patterns along a series of small man-made reservoirs in Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:5153-5166. [PMID: 24718929 DOI: 10.1007/s10661-014-3766-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
We studied nine small man-made reservoirs located in different climate regions of Kenya to get an insight into the relationship between phytoplankton community structure and its environment. The investigated ponds form three groups of three reservoirs each found in the rural areas of Machakos district, Mount Kenya region, and Lake Victoria area with varied climatic characteristics. The ponds were sampled in monthly intervals between May 2007 and June 2008 for physicochemical variables including water chemistry, phytoplankton community composition, zooplankton abundance, and bacterial numbers. All ponds were classified as hypertrophic. Seasonal changes were reflected in the phytoplankton pattern, as all ponds showed a community shift after the short dry season in February. Due to high nutrient loads and increased turbidity, Cyanobacteria, which were initially thought to be predominating in all investigated water bodies, were found to play only a minor role except for the Bomet reservoir in Lake Victoria region. Instead, Chloro- and Streptophyta, Dinophyta, and Euglenophyta were abundant in the pelagial. A principal component analysis explained around 85 % of the data variance with four principal components (PCs) interpreted as "location", "ions", "zooplankton", and "particulate matter". A clear separation of ponds with and without cattle access based on algal species community data was found indicating the need for a sustainable use and regular monitoring program as the local population is largely dependent on these sensitive small-scale ecosystems.
Collapse
|
7
|
Darchambeau F, Sarmento H, Descy JP. Primary production in a tropical large lake: the role of phytoplankton composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:178-188. [PMID: 24370692 DOI: 10.1016/j.scitotenv.2013.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ (14)C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (PBm) was found, ranging between 1.15 and 7.21 g carbong(-1)chlorophyll ah(-1), and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (Ik) ranged between 91 and 752 μE m(-2)s(-1) and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll am(-2) (annual mean) and from 143 to 278 g carbon m(-2)y(-1), respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu.
Collapse
Affiliation(s)
- F Darchambeau
- Chemical Oceanography Unit, University of Liège, Liège, Belgium.
| | - H Sarmento
- Department of Hydrobiology, Federal University of São Carlos, 13565-905 São Carlos, São Paulo, Brazil.
| | - J-P Descy
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium.
| |
Collapse
|
8
|
Tarbe AL, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Descy JP. Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. MICROBIAL ECOLOGY 2011; 62:314-323. [PMID: 21336683 DOI: 10.1007/s00248-011-9817-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/30/2011] [Indexed: 05/30/2023]
Abstract
Herbivory and bacterivory by phagotrophic protists were estimated in the southern basin of the oligotrophic Lake Tanganyika at different seasons (in the rainy season in February-March 2007 and in the dry season in July-August 2006 and September 2007), using two independent methods: the selective inhibitor technique for assessing community grazing on picocyanobacteria (PCya) and fluorescently labelled bacteria (FLB) and Synechococcus (FLA) to estimate bacterivory and herbivory by phagotrophic nanoflagellates (NF) and ciliates. Protistan grazing impact on both heterotrophic bacteria and PCya was mainly due to NF, which contributed up to 96% of the microbial grazing. There was a clear selection of FLA by protists. PCya represented the main carbon source for both flagellates and ciliates in the mixolimnion, accounting for an average of 83% of the total carbon obtained from the ingestion of picoplanktonic organisms. Protists were the main consumers of particulate primary production (46-74% depending on season). Significant seasonal variation of grazing rates (0.011-0.041 h(-1)) was found, chiefly following variation of PCya production and biomass. Assuming a growth efficiency of 0.4, total protozoan production varied seasonally (189-313 g C m(-2) day(-1)) and was roughly half of particulate phytoplankton production. This study provides evidence that NF and PCya were tightly coupled in Lake Tanganyika and that herbivory by protists may be one of the reasons why this great lake has high productivity. Our results bring support to the idea that microbial herbivory is a major process in oligotrophic freshwater systems.
Collapse
Affiliation(s)
- Anne-Laure Tarbe
- Laboratory of Freshwater Ecology, Department of Biology, University of Namur, rue de Bruxelles 61, 5000, Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo). Appl Environ Microbiol 2010; 76:6853-63. [PMID: 20802065 DOI: 10.1128/aem.02864-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.
Collapse
|