• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4693415)   Today's Articles (334)
For: Abdallah S, Lesser V. A Multiagent Reinforcement Learning Algorithm with Non-linear Dynamics. J ARTIF INTELL RES 2008. [DOI: 10.1613/jair.2628] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]  Open
Number Cited by Other Article(s)
1
Fan C, Chu KF, Wang X, Kwok KW, Iida F. State transition learning with limited data for safe control of switched nonlinear systems. Neural Netw 2024;180:106695. [PMID: 39270350 DOI: 10.1016/j.neunet.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
2
Hejazi E. Multi-agent machine learning in self-organizing systems. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
3
Zhang Z, Ong YS, Wang D, Xue B. A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Potential. IEEE TRANSACTIONS ON CYBERNETICS 2021;51:1015-1027. [PMID: 31443061 DOI: 10.1109/tcyb.2019.2932203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
4
Sherief A. Mining Dynamics: Using Data Mining Techniques to Analyze Multi-agent Learning. JOURNAL OF INTELLIGENT SYSTEMS 2017;26:613-624. [DOI: 10.1515/jisys-2016-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]  Open
5
Zhang C, Li X, Li S, Feng Z. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework. J Biomed Semantics 2017;8:31. [PMID: 29297360 PMCID: PMC5763467 DOI: 10.1186/s13326-017-0142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]  Open
6
Abdallah S, Kaisers M. Improving Multi-agent Learners Using Less-Biased Value Estimators. 2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT) 2015. [DOI: 10.1109/wi-iat.2015.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
7
Awheda MD, Schwartz HM. Exponential moving average based multiagent reinforcement learning algorithms. Artif Intell Rev 2015. [DOI: 10.1007/s10462-015-9447-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
8
Abdallah S, Sadleh S, Rahwan I, Shamsi AA, Lesser V. DNVA: A Tool for Visualizing and Analyzing Multi-agent Learning in Networks. 2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE 2014. [DOI: 10.1109/ictai.2014.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
9
Krishna Sundar D, Ravikumar K. An actor–critic algorithm for multi-agent learning in queue-based stochastic games. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
10
Independent reinforcement learners in cooperative Markov games: a survey regarding coordination problems. KNOWL ENG REV 2012. [DOI: 10.1017/s0269888912000057] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
11
Vassiliades V, Cleanthous A, Christodoulou C. Multiagent reinforcement learning: spiking and nonspiking agents in the iterated Prisoner's Dilemma. ACTA ACUST UNITED AC 2011;22:639-53. [PMID: 21421435 DOI: 10.1109/tnn.2011.2111384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
12
Learning to compete, coordinate, and cooperate in repeated games using reinforcement learning. Mach Learn 2010. [DOI: 10.1007/s10994-010-5192-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA