1
|
Pini J, Giuliano S, Matonti J, Gannoun L, Simkin D, Rouleau M, Bendahhou S. Osteogenic and Chondrogenic Master Genes Expression Is Dependent on the Kir2.1 Potassium Channel Through the Bone Morphogenetic Protein Pathway. J Bone Miner Res 2018; 33:1826-1841. [PMID: 29813186 DOI: 10.1002/jbmr.3474] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 11/07/2022]
Abstract
Andersen's syndrome is a rare disorder affecting muscle, heart, and bone that is associated with mutations leading to a loss of function of the inwardly rectifying K+ channel Kir2.1. Although the Kir2.1 function can be anticipated in excitable cells by controlling the electrical activity, its role in non-excitable cells remains to be investigated. Using Andersen's syndrome-induced pluripotent stem cells, we investigated the cellular and molecular events during the osteoblastic and chondrogenic differentiation that are affected by the loss of the Ik1 current. We show that loss of Kir2.1 channel function impairs both osteoblastic and chondrogenic processes through the downregulation of master gene expression. This downregulation is the result of an impairment of the bone morphogenetic proteins signaling pathway through dephosphorylation of the Smad proteins. Restoring Kir2.1 channel function in Andersen's syndrome cells rescued master genes expression and restored normal osteoblast and chondrocyte behavior. Our results show that Kir2.1-mediated activity controls endochondral and intramembranous ossification signaling pathways. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan Pini
- Centre for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Serena Giuliano
- UMR7370 CNRS, LP2M, Labex ICST, University Nice Côte d'Azur, Faculté de Médecine, Nice, France
| | - Julia Matonti
- UMR7370 CNRS, LP2M, Labex ICST, University Nice Côte d'Azur, Faculté de Médecine, Nice, France
| | - Lila Gannoun
- UMR7370 CNRS, LP2M, Labex ICST, University Nice Côte d'Azur, Faculté de Médecine, Nice, France
| | - Dina Simkin
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthieu Rouleau
- UMR7370 CNRS, LP2M, Labex ICST, University Nice Côte d'Azur, Faculté de Médecine, Nice, France
| | - Saïd Bendahhou
- UMR7370 CNRS, LP2M, Labex ICST, University Nice Côte d'Azur, Faculté de Médecine, Nice, France
| |
Collapse
|
2
|
Stuelsatz P, Keire P, Yablonka-Reuveni Z. Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cell. Methods Mol Biol 2017; 1556:51-102. [PMID: 28247345 DOI: 10.1007/978-1-4939-6771-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multinucleated myofibers, the functional contractile units of adult skeletal muscle, harbor mononuclear Pax7+ myogenic progenitors on their surface between the myofiber basal lamina and plasmalemma. These progenitors, known as satellite cells, are the primary myogenic stem cells in adult muscle. This chapter describes our laboratory protocols for isolating, culturing, and immunostaining intact myofibers from mouse skeletal muscle as a means for studying satellite cell dynamics. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are plated in dishes coated with PureCol collagen (formerly known as Vitrogen) and maintained in a mitogen-poor medium (± supplemental growth factors). Employing such conditions, satellite cells remain at the surface of the parent myofiber while synchronously undergoing a limited number of proliferative cycles and rapidly differentiate. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. These EDL myofibers are routinely plated individually as adherent myofibers in wells coated with Matrigel and maintained in a mitogen-rich medium, conditions in which satellite cells migrate away from the parent myofiber, proliferate extensively, and generate numerous differentiating progeny. Alternatively, these EDL myofibers can be plated as non-adherent myofibers in uncoated wells and maintained in a mitogen-poor medium (± supplemental growth factors), conditions that retain satellite cell progeny at the myofiber niche similar to the FDB myofiber cultures. However, the adherent myofiber format is our preferred choice for monitoring satellite cells in freshly isolated (Time 0) myofibers. We conclude this chapter by promoting the Nestin-GFP transgenic mouse as an efficient tool for direct analysis of satellite cells in isolated myofibers. While satellite cells have been often detected by their expression of the Pax7 protein or the Myf5nLacZ knockin reporter (approaches that are also detailed herein), the Nestin-GFP reporter distinctively permits quantification of satellite cells in live myofibers, which enables linking initial Time 0 numbers and subsequent performance upon culturing. We additionally point out to the implementation of the Nestin-GFP transgene for monitoring other selective cell lineages as illustrated by GFP expression in capillaries, endothelial tubes and neuronal cells. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular, can also be isolated and analyzed using protocols described herein. Collectively, this chapter provides essential tools for studying satellite cells in their native position and their interplay with the parent myofiber.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Culture Techniques
- Cell Differentiation
- Cell Separation/methods
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunophenotyping/methods
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Nestin/genetics
- Nestin/metabolism
- Phenotype
- Primary Cell Culture
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/ultrastructure
Collapse
Affiliation(s)
- Pascal Stuelsatz
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA
| | - Paul Keire
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Ferrucci L, Baroni M, Ranchelli A, Lauretani F, Maggio M, Mecocci P, Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr Pharm Des 2015; 20:3178-97. [PMID: 24050165 DOI: 10.2174/13816128113196660690] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
Aging is associated with a progressive loss of bone-muscle mass and strength. When the decline in mass and strength reaches critical thresholds associated with adverse health outcomes, they are operationally considered geriatric conditions and named, respectively, osteoporosis and sarcopenia. Osteoporosis and sarcopenia share many of the same risk factors and both directly or indirectly cause higher risk of mobility limitations, falls, fractures and disability in activities of daily living. This is not surprising since bones adapt their morphology and strength to the long-term loads exerted by muscle during anti-gravitational and physical activities. Non-mechanical systemic and local factors also modulate the mechanostat effect of muscle on bone by affecting the bidirectional osteocyte-muscle crosstalk, but the specific pathways that regulate these homeostatic mechanisms are not fully understood. More research is required to reach a consensus on cut points in bone and muscle parameters that identify individuals at high risk for adverse health outcomes, including falls, fractures and disability. A better understanding of the muscle-bone physiological interaction may help to develop preventive strategies that reduce the burden of musculoskeletal diseases, the consequent disability in older persons and to limit the financial burden associated with such conditions. In this review, we summarize age-related bone-muscle changes focusing on the biomechanical and homeostatic mechanisms that explain bone-muscle interaction and we speculate about possible pathological events that occur when these mechanisms become impaired. We also report some recent definitions of osteoporosis and sarcopenia that have emerged in the literature and their implications in clinical practice. Finally, we outline the current evidence for the efficacy of available anti-osteoporotic and proposed antisarcopenic interventions in older persons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - C Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, S. Andrea delle Fratte, 06100, Perugia, Italy.
| |
Collapse
|
4
|
Kamli MR, Kim J, Pokharel S, Jan AT, Lee EJ, Choi I. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells. Biochem Biophys Res Commun 2014; 450:1291-6. [DOI: 10.1016/j.bbrc.2014.06.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
|
5
|
Grounds MD, Terrill JR, Radley-Crabb HG, Robertson T, Papadimitriou J, Spuler S, Shavlakadze T. Lipid accumulation in dysferlin-deficient muscles. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1668-76. [PMID: 24685690 DOI: 10.1016/j.ajpath.2014.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 02/01/2023]
Abstract
Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.
Collapse
Affiliation(s)
- Miranda D Grounds
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia.
| | - Jessica R Terrill
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Hannah G Radley-Crabb
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia; CHIRI Biosciences Research Precinct, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Terry Robertson
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - John Papadimitriou
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Berlin, Germany
| | - Tea Shavlakadze
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
6
|
Yan X, Zhu MJ, Dodson MV, Du M. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genomics 2013; 1:29-38. [PMID: 25031653 PMCID: PMC4091428 DOI: 10.7150/jgen.3930] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.
Collapse
Affiliation(s)
- Xu Yan
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Mei-Jun Zhu
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Michael V Dodson
- 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| | - Min Du
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071 ; 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| |
Collapse
|
7
|
García-Parra P, Naldaiz-Gastesi N, Maroto M, Padín JF, Goicoechea M, Aiastui A, Fernández-Morales JC, García-Belda P, Lacalle J, Álava JI, García-Verdugo JM, García AG, Izeta A, López de Munain A. Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration, and fatty infiltration. Tissue Eng Part C Methods 2013; 20:28-41. [PMID: 23631552 DOI: 10.1089/ten.tec.2013.0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 5-7 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na(+)- and Ca(2+)-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca(2+) transients; fiber contractions coupled to these Ca(2+) transients suggest that Ca(2+) entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca(2+) transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration.
Collapse
Affiliation(s)
- Patricia García-Parra
- 1 Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Segev E, Shefer G, Adar R, Chapal-Ilani N, Itzkovitz S, Horovitz I, Reizel Y, Benayahu D, Shapiro E. Muscle-bound primordial stem cells give rise to myofiber-associated myogenic and non-myogenic progenitors. PLoS One 2011; 6:e25605. [PMID: 22022423 PMCID: PMC3194814 DOI: 10.1371/journal.pone.0025605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 09/07/2011] [Indexed: 12/14/2022] Open
Abstract
Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density. Our analyses show that (i) in addition to myogenic progenitors, myofibers also harbor non-myogenic progenitors of a distinct, yet close, lineage; (ii) myofiber-associated non-myogenic and myogenic cells share the same muscle-bound primordial stem cells of a lineage distinct from bone marrow MSCs; (iii) these muscle-bound primordial stem-cells first part to individual muscles and then differentiate into myogenic and non-myogenic stem cells.
Collapse
Affiliation(s)
- Elad Segev
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Shefer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rivka Adar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Chapal-Ilani
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Horovitz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Reizel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
9
|
Abstract
Skeletal muscle aging is associated with increased inflammation and oxidative stress, a decrease in the ability to rebuild muscle after injury and in response to exercise. In this perspective, we discuss the mechanisms regulating Sirt1 activity and expression in skeletal muscles, emphasizing their implications in muscle physiology and the impairment of muscle function with age.
Collapse
Affiliation(s)
- Patricia S Pardo
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Baylor College of Medicine, One Baylor Plaza 825E, Houston TX 77030, USA
| | | |
Collapse
|
10
|
Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, Aubertin-Leheudre M. Menopause and sarcopenia: A potential role for sex hormones. Maturitas 2011; 68:331-6. [PMID: 21353405 DOI: 10.1016/j.maturitas.2011.01.014] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/23/2011] [Indexed: 12/25/2022]
Abstract
Menopause is associated with a decline in estrogen levels, which could lead to an increase in visceral adiposity as well as a decrease in bone density, muscle mass and muscle strength. This decline in muscle mass, known as sarcopenia, is frequently observed in postmenopausal women. Potential causes of sarcopenia include age-related changes in the hormonal status, low levels of physical activity, reduced protein intake and increased oxidative stress. However, the role of sex hormones, specifically estrogens, on the onset of sarcopenia is controversial. Preventing sarcopenia and preserving muscle strength are highly relevant in order to prevent functional impairment and physical disability. To date, resistance training has been shown to be effective in attenuating age-related muscle loss and strength. However, results on the effect of hormonal supplementation to treat or prevent sarcopenia are contradictory. Further research is needed to identify other potential mechanisms of sarcopenia as well as effective interventions for the prevention and treatment of sarcopenia. Therefore, the purpose of this review will be to examine the role of sex hormonal status in the development of sarcopenia. We will also overview the physical as well as metabolic consequences of sarcopenia and the efficiency of different interventions for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Virginie Messier
- Institut de Recherches Cliniques de Montréal, 110, avenue des Pins Ouest, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|
11
|
Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS One 2010; 5:e13307. [PMID: 20967266 PMCID: PMC2953499 DOI: 10.1371/journal.pone.0013307] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/29/2010] [Indexed: 12/03/2022] Open
Abstract
Background Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary. Methodology Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-vivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both satellite numbers and myogenic properties may improve myofiber maintenance in aging.
Collapse
Affiliation(s)
- Gabi Shefer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
12
|
Shibata S, Ueno C, Ito T, Yamanouchi K, Matsuwaki T, Nishihara M. Skeletal muscle growth defect in human growth hormone transgenic rat is accompanied by phenotypic changes in progenitor cells. AGE (DORDRECHT, NETHERLANDS) 2010; 32:239-253. [PMID: 20431991 PMCID: PMC2861751 DOI: 10.1007/s11357-010-9130-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/04/2010] [Indexed: 05/29/2023]
Abstract
Growth hormone (GH) is known to have a pivotal role in the maintenance of skeletal muscle mass. Sarcopenia, the loss of skeletal muscle mass, is a common phenomenon in aging, and it is widely accepted that sarcopenia is largely attributed to age-related decline in GH secretion. In the present study, we tested if human growth hormone transgenic rats (GH-TG rats) whose plasma GH levels are maintained relatively low could be an appropriate model for sarcopenia. Analyses of GH-TG rats revealed that they exhibit skeletal muscle growth defect as well as atrophy of myofibers. The number of myofibers in tibialis anterior muscle was comparable to that of WT rats, while the proportion of type I slow myofibers in tibialis anterior muscle was increased in GH-TG rats after 5 months. Neither increased expression of ubiquitin ligases, MuRF1 and MAFbx, nor indication of apoptotic cell death was observed. Notably, myogenic differentiation potential of skeletal muscle progenitor cells in GH-TG rats was lower than WT rats, and this was accompanied by increased adipogenic potential. These results indicate that GH-TG rats could be a useful model to elucidate the mechanism of sarcopenia induced by reduced GH action and raised the possibility that decreased GH action may cause an alteration of differentiation potential of skeletal muscle progenitor cells.
Collapse
Affiliation(s)
- Shingo Shibata
- Department of Veterinary Physiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| | - Chiori Ueno
- Department of Veterinary Physiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| | - Tsuyoshi Ito
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan
| |
Collapse
|
13
|
Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 2010; 21:543-59. [PMID: 19779761 PMCID: PMC2832869 DOI: 10.1007/s00198-009-1059-y] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Abstract
The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence.
Collapse
Affiliation(s)
- T Lang
- Department of Radiology and Biomedical Imaging, University of California, UCSF, San Francisco, CA 94143-0946, USA.
| | | | | | | | | | | |
Collapse
|
14
|
New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 2009; 132:141-57. [PMID: 19484472 DOI: 10.1007/s00418-009-0606-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2009] [Indexed: 01/24/2023]
Abstract
Presently applied methods to identify and quantify human satellite cells (SCs) give discrepant results. We introduce a new immunofluorescence method that simultaneously monitors two SC markers (NCAM and Pax7), the basal lamina and nuclei. Biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects were re-examined. Significantly different results from those with staining for NCAM and nuclei were observed. There were three subtypes of SCs; NCAM(+)/Pax7(+) (94%), NCAM(+)/Pax7(-) (4%) and NCAM(-)/Pax7(+) (1%) but large individual variability existed. The proportion of SCs per nuclei within the basal lamina of myofibres (SC/N) was similar for all groups reflecting a balance between the number of SCs and myonuclei to maintain homeostasis. We emphasise that it is important to quantify both SC/N and the number of SCs per fibre. Our multiple marker method is more reliable for SC identification and quantification and can be used to evaluate other markers of muscle progenitor cells.
Collapse
|
15
|
Benayahu D, Shefer G, Shur I. Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues. Ann Anat 2008; 191:2-12. [PMID: 18926677 DOI: 10.1016/j.aanat.2008.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/18/2022]
Abstract
Utilizing adult stem cells for regenerative medicine of skeletal tissues requires the development of molecular and biochemical tools that will allow isolation of these cells and direction of their differentiation towards a desired lineage and tissue formation. Stem cell commitment and fate decision into specialized functional cells involve coordinated activation and silencing of lineage-specific genes. Transcription factors and chromatin-remodeling proteins are key players in the control process of lineage commitment and differentiation during embryogenesis and adulthood. Transcription factors act in cooperation with co-regulator proteins to generate tissue-specific responses that elicits the tissue specific gene expression. Consequently, one of the main challenges of today's research is to characterize molecular pathways that coordinate the lineage-specific differentiation. Epigenetic regulation includes chromatin remodeling that control structural changes of DNA required for the binding of transcription factors to promoter regions. Revealing the mechanisms of action of such factors will provide understanding of how transcription and chromatin regulatory factors function together to regulate stem cell lineage fate decision.
Collapse
Affiliation(s)
- Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The satellite cell is the principal muscle stem cell. Recent research, however, has highlighted new stem cell sources that, once activated in the muscle tissue, can participate in muscle regeneration. This article reviews the state of research on stem cell populations that have potential for treatment of muscular dystrophies. RECENT FINDINGS Despite recent findings about the stem cell character of satellite cells and their in-vivo myogenic potential, limitations related to muscle precursor cell transfer therapy have encouraged the investigation of stem cell sources other than satellite cells. Current research is focused on identifying the best stem cell in the endothelial compartment, which is able to be systemically delivered to reach all the muscles and to contribute to widespread muscle regeneration within these muscles. SUMMARY Current results highlight many possible stem cell sources for stem cell therapy of muscle diseases, and work is ongoing to identify the most effective candidate that is able to robustly regenerate muscle tissue and to functionally repopulate the muscle stem cell compartment.
Collapse
Affiliation(s)
- Luisa Boldrin
- The Dubowitz Neuromuscular Unit, Department of Paediatrics, Imperial College London, Hammersmith Hospital, London, UK
| | | |
Collapse
|
17
|
Yablonka-Reuveni Z, Day K, Vine A, Shefer G. Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci 2007; 86:E207-16. [PMID: 17878281 PMCID: PMC4450102 DOI: 10.2527/jas.2007-0473] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Satellite cells, the main source of myoblasts in postnatal muscle, are located beneath the myofiber basal lamina. The myogenic potential of satellite cells was initially documented based on their capacity to produce progeny that fused into myotubes. More recently, molecular markers of resident satellite cells were identified, further contributing to defining these cells as myogenic stem cells that produce differentiating progeny and self-renew. Herein, we discuss aspects of the satellite cell transcriptional milieu that have been intensively investigated in our research. We elaborate on the expression patterns of the paired box (Pax) transcription factors Pax3 and Pax7, and on the myogenic regulatory factors myogenic factor 5 (Myf5), myogenic determination factor 1 (MyoD), and myogenin. We also introduce original data on MyoD upregulation in newly activated satellite cells, which precedes the first round of cell proliferation. Such MyoD upregulation occurred even when parent myofibers with their associated satellite cells were exposed to pharmacological inhibitors of hepatocyte growth factor and fibroblast growth factor receptors, which are typically involved in promoting satellite cell proliferation. These observations support the hypothesis that most satellite cells in adult muscle are committed to rapidly entering myogenesis. We also detected expression of serum response factor in resident satellite cells prior to MyoD expression, which may facilitate the rapid upregulation of MyoD. Aspects of satellite cell self-renewal based on the reemergence of cells expressing Pax7, but not MyoD, in myogenic cultures are discussed further herein. We conclude by describing our recent studies using transgenic mice in which satellite cells are traced and isolated based on their expression of green fluorescence protein driven by regulatory elements of the nestin promoter (nestin-green fluorescence protein). This feature provides us with a novel means of studying satellite cell transcriptional signatures, heterogeneity among muscle groups, and the role of the myogenic niche in directing satellite cell self-renewal.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|