1
|
Chernov AN, Skliar SS, Kim AV, Tsapieva A, Pyurveev SS, Filatenkova TA, Matsko MV, Ivanov SD, Shamova OV, Suvorov AN. Glioblastoma Multiforme: Sensitivity to Antimicrobial Peptides LL-37 and PG-1, and Their Combination with Chemotherapy for Predicting the Overall Survival of Patients. Pharmaceutics 2024; 16:1234. [PMID: 39339270 PMCID: PMC11435188 DOI: 10.3390/pharmaceutics16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Glioblastomas (GBMs) are the most malignant and intractable of all cancers, with an unfavorable clinical prognosis for affected patients. The objective was to analyze the sensitivity of GBM cells to the antimicrobial peptides (AMPs) cathelicidin (LL-37) and protegrin-1 (PG-1), both alone and in combination with chemotherapy, to predict overall survival (OS) in the patients. Methods: The study was conducted on 27 GBM patients treated in the neurosurgical department of the Almazov Medical Research Centre (Saint Petersburg, Russia) from 2021 to 2024. The cytotoxic effects of chemotherapy, AMPs, and their combinations on brain tumor cells were assessed by an MTT assay using a 50% inhibitory concentration (IC50). Results: In GBM cells from the patients, LL-37 and PG-1 exhibited strong anticancer effects, surpassing those of chemotherapy drugs. These LL-37 and PG-1 anticancer effects were associated with a statistically significant increase in life expectancy and OS in GBM patients. These findings were confirmed by experiments on rats with C6 glioma, where the intranasal administration of LL-37 (300 μM) and PG-1 (600 μM) increased the life expectancy of the animals to 69 and 55 days, respectively, compared to 24 days in the control group (HR = 4.139, p = 0.0005; HR = 2.542, p = 0.0759). Conclusions: Additionally, the combination of LL-37 and PG-1 with chemotherapy drugs showed that a high IC50 of LL-37 with cisplatin (cutoff > 800 μM) in GBM cells was associated with increased life expectancy (19 vs. 5 months, HR = 4.708, p = 0.0101) and OS in GBM patients. These combinations could be used in future GBM treatments.
Collapse
Affiliation(s)
- Alexander N. Chernov
- World-Class Research Center “Center for Personalized Medicine”, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (A.T.); (T.A.F.); (O.V.S.); (A.N.S.)
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia;
| | - Sofia S. Skliar
- Children’s Neurosurgical Department No. 7, Almazov Medical Research Centre, 197341 Saint Petersburg, Russia;
| | - Alexander V. Kim
- Laboratory of Neurooncology of Polenov Neurosurgical Institute, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia;
| | - Anna Tsapieva
- World-Class Research Center “Center for Personalized Medicine”, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (A.T.); (T.A.F.); (O.V.S.); (A.N.S.)
| | - Sarng S. Pyurveev
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia;
| | - Tatiana A. Filatenkova
- World-Class Research Center “Center for Personalized Medicine”, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (A.T.); (T.A.F.); (O.V.S.); (A.N.S.)
| | - Marina V. Matsko
- Scientific Department of State Budgetary Healthcare Institution Saint-Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological) named N.P. Napalkov, 197758 Saint Petersburg, Russia;
- Department of Oncology, Medical and Social Institute, Saint-Petersburg University, 199034 Saint Petersburg, Russia
| | - Sergey D. Ivanov
- FGBU N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 197758 Saint Petersburg, Russia;
| | - Olga V. Shamova
- World-Class Research Center “Center for Personalized Medicine”, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (A.T.); (T.A.F.); (O.V.S.); (A.N.S.)
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander N. Suvorov
- World-Class Research Center “Center for Personalized Medicine”, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197376 Saint Petersburg, Russia; (A.T.); (T.A.F.); (O.V.S.); (A.N.S.)
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
2
|
Höpfinger A, Schmid A, Karrasch T, Pankuweit S, Schäffler A, Grote K. Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human. Int J Mol Sci 2024; 25:2909. [PMID: 38474156 PMCID: PMC10931542 DOI: 10.3390/ijms25052909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients. Atherosclerosis was induced in low-density lipoprotein receptor-deficient (Ldlr-/-) mice by high-fat diet (HFD). C57BL/6J wild-type mice were subjected to myocardial infarction by permanent or transient left anterior descending (LAD)-ligation. Cramp gene expression in murine organs and tissues was investigated via real-time PCR. Blood samples of 234 adult individuals with or without coronary artery disease (CAD) were collected. Human and murine CAMP/CRAMP serum levels were quantified by ELISA. Atherosclerotic mice exhibited significantly increased CRAMP serum levels and induced Cramp gene expression in the spleen and liver, whereas experimental myocardial infarction substantially decreased CRAMP serum levels. Human CAMP serum quantities were not significantly affected by CAD while being correlated with leukocytes and pro-inflammatory cytokines. Our data show an influence of cathelicidin in experimental atherosclerosis, myocardial infarction, as well as in patients with CAD. Further studies are needed to elucidate the pathophysiological mechanism.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Sabine Pankuweit
- Department of Cardiology and Angiology, Philipps-University Marburg, Baldinger Str., 35043 Marburg, Germany; (S.P.); (K.G.)
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (A.S.); (T.K.); (A.S.)
| | - Karsten Grote
- Department of Cardiology and Angiology, Philipps-University Marburg, Baldinger Str., 35043 Marburg, Germany; (S.P.); (K.G.)
| |
Collapse
|
3
|
Tanabe G, Mori T, Araki M, Kataoka H, Into T. Role of LL-37 in Oral Bacterial DNA Accumulation in Dental Plaque. J Dent Res 2024; 103:177-186. [PMID: 38093556 DOI: 10.1177/00220345231210767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Dental plaque, a highly structured polymicrobial biofilm, persistently forms in the oral cavity and is a common problem affecting oral health. The role of oral defense factors in either collaborating or disrupting host-microbiome interactions remains insufficiently elucidated. This study aims to explore the role of LL-37, a critical antimicrobial peptide in the oral cavity, in dental plaque formation. Through immunostaining dental plaque specimens, we observed that LL-37 and DNA colocalized in the samples, appearing as condensed clusters. In vitro experiments revealed that LL-37 binds rapidly to oral bacterial DNA, forming high molecular weight, DNase-resistant complexes. This interaction results in LL-37 losing its inherent antibacterial activity. Further, upon the addition of LL-37, we observed a visible increase in the precipitation of bacterial DNA. We also discovered a significant correlation between the levels of the DNA-LL-37 complex and LL-37 within dental plaque specimens, demonstrating the ubiquity of the complex within the biofilm. By using immunostaining on dental plaque specimens, we could determine that the DNA-LL-37 complex was present as condensed clusters and small bacterial cell-like structures. This suggests that LL-37 immediately associates with the released bacterial DNA to form complexes that subsequently diffuse. We also demonstrated that the complexes exhibited similar Toll-like receptor 9-stimulating activities across different bacterial species, including Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, and Streptococcus salivarius. However, these complexes prompted dissimilar activities, such as the production of IL-1β in monocytic cells via both NLRP3 pathway-dependent and pathway-independent mechanisms. This study, therefore, reveals the adverse role of LL-37 in dental plaque, where it binds bacterial DNA to form complexes that may precipitate to behave like an extracellular matrix. Furthermore, the unveiled stimulating properties and species-dependent activities of the oral bacterial DNA-LL-37 complexes enrich our understanding of dental plaque pathogenicity and periodontal innate immune responses.
Collapse
Affiliation(s)
- G Tanabe
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Sports Dentistry, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - T Mori
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - M Araki
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Asahi University School of Dental Hygienists, Mizuho, Gifu, Japan
| | - H Kataoka
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - T Into
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
4
|
Soldati KR, Jiang Y, Brandt BW, Exterkate RAM, Buijs MJ, Nazmi K, Kaman WE, Cheng L, Bikker FJ, Crielaard W, Zandim-Barcelos DL, Deng DM. Differential Modulation of Saliva-Derived Microcosm Biofilms by Antimicrobial Peptide LL-31 and D-LL-31. Pathogens 2023; 12:1295. [PMID: 38003760 PMCID: PMC10675243 DOI: 10.3390/pathogens12111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Microbiome modulation, aiming to restore a health-compatible microbiota, is a novel strategy to treat periodontitis. This study evaluated the modulation effects of antimicrobial peptide LL-31 and its D-enantiomer (D-LL-31) on saliva-derived microcosm biofilms, spiked with or without Porphyromonas gingivalis. To this end, one-day-old biofilms were incubated for 24 h with biofilm medium alone, or medium containing 40 µM LL-31 or D-LL-31, after which biofilms were grown for 5 days. Biofilms were assessed at 1 day and 5 days after intervention for the total viable cell counts, dipeptidyl peptidase IV (DPP4) activity, P. gingivalis amount (by qPCR) and microbial composition (by sequencing). The results showed that D-LL-31, not LL-31, significantly reduced the total viable cell counts, the P. gingivalis amount, and the DPP4 activity of the biofilms spiked with P. gingivalis, but only at 1 day after intervention. In the biofilms spiked with P. gingivalis, D-LL-31 tended to reduce the α-diversity and the compositional shift of the biofilms in time as compared to the control and LL-31 groups. In conclusion, D-LL-31 showed a better performance than LL-31 in biofilm modulation. The biofilm modulation function of the peptides could be impaired when the biofilms were in a severely dysbiotic state.
Collapse
Affiliation(s)
- Kahena R. Soldati
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, Universidade Estadual Paulista—UNESP, Araraquara 1680, SP, Brazil;
| | - Yaling Jiang
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Rob A. M. Exterkate
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.N.); (W.E.K.); (F.J.B.)
| | - Wendy E. Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.N.); (W.E.K.); (F.J.B.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.N.); (W.E.K.); (F.J.B.)
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Daniela L. Zandim-Barcelos
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, Universidade Estadual Paulista—UNESP, Araraquara 1680, SP, Brazil;
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| |
Collapse
|
5
|
Dong C, Xu L, Lu W, Li M, Zhang R, Sun Y, Liu J, Chu X. Antibacterial peptide PMAP-37(F34-R), expressed in Pichia pastoris, is effective against pathogenic bacteria and preserves plums. Microb Cell Fact 2023; 22:164. [PMID: 37635252 PMCID: PMC10464103 DOI: 10.1186/s12934-023-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Recently, researchers have focused on the search for alternatives to conventional antibiotics. Antimicrobial peptides are small bioactive peptides that regulate immune activation and have antibacterial activity with a reduced risk of bacterial resistance. Porcine myeloid antibacterial peptide 37 (PMAP-37) is a small-molecule peptide with broad-spectrum antibacterial activity isolated from pig bone marrow, and PMAP-37(F34-R) is its analogue. In this study, PMAP-37(F34-R) was recombinantly expressed in Pichia pastoris, and the recombinant peptide was further investigated for its antibacterial properties, mechanism and preservative in plums. RESULTS To obtain a Pichia pastoris strain expressing PMAP-37(F34-R), we constructed a plasmid expressing recombinant PMAP-37(F34-R) (pPICZα-PMAP-37(F34-R)-A) and introduced it into Pichia pastoris. Finally, we obtained a highly active recombinant peptide, PMAP-37(F34-R), which inhibited the activity of both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration is 0.12-0.24 µg/mL, and it can destroy the integrity of the cell membrane, leading to cell lysis. It has good stability and is not easily affected by the external environment. Hemolysis experiments showed that 0.06 µg/mL-0.36 µg/mL PMAP-37(F34-R) had lower hemolysis ability to mammalian cells, and the hemolysis rate was below 1.5%. Additionally, 0.36 µg/mL PMAP-37(F34-R) showed a good preservative effect in plums. The decay and weight loss rates of the treated samples were significantly lower than those of the control group, and the respiratory intensity of the fruit was delayed in the experimental group. CONCLUSIONS In this study, we constructed a recombinant Pichia pastoris strain, which is a promising candidate for extending the shelf life of fruits and has potential applications in the development of new preservatives.
Collapse
Affiliation(s)
- Chunming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Lijun Xu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Weitao Lu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mengru Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rui Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yanyan Sun
- Jinan Deheng Medical Technology Co., Ltd, Jinan, 250031, Shandong Province, China
| | - Jian Liu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
6
|
Yang M, Liu S, Zhang C. Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
7
|
Bhusal A, Afridi R, Lee WH, Suk K. Bidirectional Communication Between Microglia and Astrocytes in Neuroinflammation. Curr Neuropharmacol 2023; 21:2020-2029. [PMID: 36453496 PMCID: PMC10556371 DOI: 10.2174/1570159x21666221129121715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is a common feature of diverse nervous system pathologies. In many instances, it begins at an early stage of the disease, paving the way for further exacerbations. The main drivers of neuroinflammation are brain-resident glial cells, such as microglia and astrocytes. Microglia are the primary responders to any insult to the brain parenchyma, translating the signals into diverse molecules. These molecules derived from microglia can regulate the stimuli-dependent reactivity of astrocytes. Once activated, astrocytes in turn, can control microglia phenotypes. Recent evidence indicates that the crosstalk between these glial cells plays an important role in delaying or accelerating neuroinflammation and overall disease progression. To date, various molecules have been recognized as key mediators of the bidirectional communication between microglia and astrocytes. The current review aims to discuss the novel molecules identified recently, which play a critical role in interglial crosstalk, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Sciences, School of Medicine, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Fang X, Nong K, Wang Z, Jin Y, Gao F, Zeng Q, Wang X, Zhang H. Human cathelicidin LL-37 exerts amelioration effects against EHEC O157:H7 infection regarding inflammation, enteric dysbacteriosis, and impairment of gut barrier function. Peptides 2023; 159:170903. [PMID: 36370932 DOI: 10.1016/j.peptides.2022.170903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infection impairs intestinal barrier function, causing intestinal inflammation and enteric dysbacteriosis. The human cathelicidin LL-37 can regulate excessive inflammatory responses, barrier function, and balance the intestinal microbial community; however, little is known about its effects on inflammation, intestinal barrier function, and microbiota disorders in EHEC O157:H7-infected mice. In this study, we investigated the protective effect of LL-37 against EHEC O157:H7 infection and elucidated the underlying mechanism using a mouse model. LL-37 treatment was found to inhibit body weight loss, restore edema and destruction of the intestinal villi, and significantly reduce epithelial apoptosis (P < 0.05) in EHEC O157:H7-infected mice. Furthermore, inflammatory infiltration of macrophages and neutrophils into the jejunum and colon was significantly decreased (P < 0.05). LL-37 significantly downregulated the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) (P < 0.05) and upregulated the anti-inflammatory cytokine (IL-10) during EHEC O157:H7 infection. LL-37 increased the expression of tight junction proteins (ZO-1, ZO-2, claudin-1, and occludin), which are associated with intestinal barrier function, and had a positive effect on EHEC O157:H7-induced microbial disorders, particularly in terms of the inflammation-related microbiota. LL-37 also significantly decreased the E. coli load in the liver and spleen (P < 0.01) and restored the structure of the liver and kidney. Taken together, LL-37 conferred protection in a EHEC O157:H7-induced mouse model by reducing intestinal inflammation, enhancing intestinal barrier function, and restoring the balance of the intestinal microbiota, which indicates the therapeutic potential of LL-37 against pathogen infection.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Yuanli Jin
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Qiuyu Zeng
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
9
|
Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022; 10:900418. [PMID: 35874827 PMCID: PMC9298847 DOI: 10.3389/fcell.2022.900418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as adult multipotent cells, possess considerable regenerative and anti-neoplastic effects, from inducing apoptosis in the cancer cells to reducing multidrug resistance that bring them up as an appropriate alternative for cancer treatment. These cells can alter the behavior of cancer cells, the condition of the tumor microenvironment, and the activity of immune cells that result in tumor regression. It has been observed that during inflammatory conditions, a well-known feature of the tumor microenvironment, the MSCs produce and release some molecules called “antimicrobial peptides (AMPs)” with demonstrated anti-neoplastic effects. These peptides have remarkable targeted anticancer effects by attaching to the negatively charged membrane of neoplastic cells, disrupting the membrane, and interfering with intracellular pathways. Therefore, AMPs could be considered as a part of the wide-ranging anti-neoplastic effects of MSCs. This review focuses on the possible anti-neoplastic effects of MSCs-derived AMPs and their mechanisms. It also discusses preconditioning approaches and using exosomes to enhance AMP production and delivery from MSCs to cancer cells. Besides, the clinical administration of MSCs-derived AMPs, along with their challenges in clinical practice, were debated.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rational design of bioactive chimeric construct by exploring archaeal antimicrobial peptides: an in silico approach. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
12
|
Xu B, Wu X, Gong Y, Cao J. IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: implications for immunotherapy of Clostridioides difficile infection. Gut Microbes 2022; 13:1968258. [PMID: 34432564 PMCID: PMC8405154 DOI: 10.1080/19490976.2021.1968258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection is currently the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. Cathelicidins, a major group of natural antimicrobial peptides, have antimicrobial and immunomodulatory activities in Clostridioides difficile infection. Here, we have shown that cytokine IL-27 induced human cathelicidin antimicrobial peptide (LL-37) expression in primary human colonic epithelial cells. IL-27 receptor-deficient mice had impaired expression of cathelicidin-related antimicrobial peptide (CRAMP, mouse homolog for human LL-37) after Clostridioides difficile infection, and restoration of CRAMP improved Clostridium difficile clearance and reduced mortality in IL-27 receptor-deficient mice after Clostridioides difficile challenge. In clinical samples from 119 patients with Clostridioides difficile infection, elevated levels of IL-27 were positively correlated with LL-37 in the sera and stools. These findings suggest that IL-27 may be involved in host immunity against Clostridioides difficile infection via induction of LL-37/CRAMP. Therefore, IL-27-LL-37 axis may be a valuable pathway in the development of immune-based therapy.
Collapse
Affiliation(s)
- Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xianan Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Gong
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,CONTACT Ju Cao Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1#, Yu Zhong District, Chongqing, China
| |
Collapse
|
13
|
McDonough LD, Mishra AA, Tosini N, Kakade P, Penumutchu S, Liang SH, Maufrais C, Zhai B, Taur Y, Belenky P, Bennett RJ, Hohl TM, Koh AY, Ene IV. Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. mBio 2021; 12:e0287821. [PMID: 34724818 PMCID: PMC8561340 DOI: 10.1128/mbio.02878-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans isolates, 529L and CHN1, that stably colonize the murine GI tract in three different animal facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial microbiota did not show notable differences among mice colonized with the three C. albicans strains. We compared the genotypes and phenotypes of these three strains and identified thousands of single nucleotide polymorphisms (SNPs) and multiple phenotypic differences, including their ability to grow and filament in response to nutritional cues. Despite striking filamentation differences under laboratory conditions, however, analysis of cell morphology in the GI tract revealed that the three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-deficient mice modestly increased the ability of SC5314 to colonize the GI tract relative to CHN1 and 529L. These studies provide new insights into how strain-specific differences impact C. albicans traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans pathobiology in its natural host niche. IMPORTANCE Understanding how fungi colonize the GI tract is increasingly recognized as highly relevant to human health. The animal models used to study Candida albicans commensalism commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to establish successful GI colonization by the C. albicans reference isolate SC5314. Here, we characterize two C. albicans isolates that can colonize the murine GI tract without antibiotic treatment and can therefore be used as tools for studying fungal commensalism. Importantly, experiments were replicated in three different animal facilities and utilized three different mouse strains. Differential colonization between fungal isolates was not associated with alterations in the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial peptide. This work emphasizes the importance of C. albicans intraspecies variation as well as host antimicrobial defense mechanisms in defining the outcome of commensal interactions.
Collapse
Affiliation(s)
- Liam D. McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Animesh A. Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas Tosini
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Andrew Y. Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Iuliana V. Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Zsila F, Ricci M, Szigyártó IC, Singh P, Beke-Somfai T. Quorum Sensing Pseudomonas Quinolone Signal Forms Chiral Supramolecular Assemblies With the Host Defense Peptide LL-37. Front Mol Biosci 2021; 8:742023. [PMID: 34708076 PMCID: PMC8542694 DOI: 10.3389/fmolb.2021.742023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Host defense antimicrobial peptides (HDPs) constitute an integral component of the innate immune system having nonspecific activity against a broad spectrum of microorganisms. They also have diverse biological functions in wound healing, angiogenesis, and immunomodulation, where it has also been demonstrated that they have a high affinity to interact with human lipid signaling molecules. Within bacterial biofilms, quorum sensing (QS), the vital bacterial cell-to-cell communication system, is maintained by similar diffusible small molecules which control phenotypic traits, virulence factors, biofilm formation, and dispersion. Efficient eradication of bacterial biofilms is of particular importance as these colonies greatly help individual cells to tolerate antibiotics and develop antimicrobial resistance. Regarding the antibacterial function, for several HDPs, including the human cathelicidin LL-37, affinity to eradicate biofilms can exceed their activity to kill individual bacteria. However, related underlying molecular mechanisms have not been explored yet. Here, we employed circular dichroism (CD) and UV/VIS spectroscopic analysis, which revealed that LL-37 exhibits QS signal affinity. This archetypal representative of HDPs interacts with the Pseudomonas quinolone signal (PQS) molecules, producing co-assemblies with peculiar optical activity. The binding of PQS onto the asymmetric peptide chains results in chiral supramolecular architectures consisting of helically disposed, J-aggregated molecules. Besides the well-known bacterial membrane disruption activity, our data propose a novel action mechanism of LL-37. As a specific case of the so-called quorum quenching, QS signal molecules captured by the peptide are sequestered inside co-assemblies, which may interfere with the microbial QS network helping to prevent and eradicate bacterial infections.
Collapse
Affiliation(s)
- Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | | | | | | | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| |
Collapse
|
15
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
16
|
Porter RJ, Murray GI, Alnabulsi A, Humphries MP, James JA, Salto‐Tellez M, Craig SG, Wang JM, Yoshimura T, McLean MH. Colonic epithelial cathelicidin (LL-37) expression intensity is associated with progression of colorectal cancer and presence of CD8 + T cell infiltrate. J Pathol Clin Res 2021; 7:495-506. [PMID: 33988317 PMCID: PMC8363930 DOI: 10.1002/cjp2.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer mortality. Here, we define the colonic epithelial expression of cathelicidin (LL-37) in CRC. Cathelicidin exerts pleotropic effects including anti-microbial and immunoregulatory functions. Genetic knockout of cathelicidin led to increased size and number of colorectal tumours in the azoxymethane-induced murine model of CRC. We aimed to translate this to human disease. The expression of LL-37 in a large (n = 650) fully characterised cohort of treatment-naïve primary human colorectal tumours and 50 matched normal mucosa samples with associated clinical and pathological data (patient age, gender, tumour site, tumour stage [UICC], presence or absence of extra-mural vascular invasion, tumour differentiation, mismatch repair protein status, and survival to 18 years) was assessed by immunohistochemistry. The biological consequences of LL-37 expression on the epithelial barrier and immune cell phenotype were assessed using targeted quantitative PCR gene expression of epithelial permeability (CLDN2, CLDN4, OCLN, CDH1, and TJP1) and cytokine (IL-1β, IL-18, IL-33, IL-10, IL-22, and IL-27) genes in a human colon organoid model, and CD3+ , CD4+ , and CD8+ lymphocyte phenotyping by immunohistochemistry, respectively. Our data reveal that loss of cathelicidin is associated with human CRC progression, with a switch in expression intensity an early feature of CRC. LL-37 expression intensity is associated with CD8+ T cell infiltrate, influenced by tumour characteristics including mismatch repair protein status. There was no effect on epithelial barrier gene expression. These data offer novel insights into the contribution of LL-37 to the pathogenesis of CRC and as a therapeutic molecule.
Collapse
Affiliation(s)
- Ross J Porter
- Centre for Inflammation Research, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Graeme I Murray
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Abdo Alnabulsi
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Manuel Salto‐Tellez
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
- Integrated Pathology Programme, Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | - Stephanie G Craig
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Ji M Wang
- Cancer and Inflammation Program, Center for Cancer ResearchNational Cancer Institute at FrederickFrederickMDUSA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Mairi H McLean
- Division of Molecular & Clinical Medicine, School of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
17
|
Chen K, Yoshimura T, Gong W, Tian C, Huang J, Trinchieri G, Wang JM. Requirement of CRAMP for mouse macrophages to eliminate phagocytosed E. coli through an autophagy pathway. J Cell Sci 2021; 134:jcs252148. [PMID: 33468624 PMCID: PMC7970306 DOI: 10.1242/jcs.252148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023] Open
Abstract
Host-derived antimicrobial peptides play an important role in the defense against extracellular bacterial infections. However, the capacity of antimicrobial peptides derived from macrophages as potential antibacterial effectors against intracellular pathogens remains unknown. In this study, we report that normal (wild-type, WT) mouse macrophages increased their expression of cathelin-related antimicrobial peptide (CRAMP, encoded by Camp) after infection by viable E. coli or stimulation with inactivated E. coli and its product lipopolysaccharide (LPS), a process involving activation of NF-κB followed by protease-dependent conversion of CRAMP from an inactive precursor to an active form. The active CRAMP was required by WT macrophages for elimination of phagocytosed E. coli, with participation of autophagy-related proteins ATG5, LC3-II and LAMP-1, as well as for aggregation of the bacteria with p62 (also known as SQSTM1). This process was impaired in CRAMP-/- macrophages, resulting in retention of intracellular bacteria and fragmentation of macrophages. These results indicate that CRAMP is a critical component in autophagy-mediated clearance of intracellular E. coli by mouse macrophages.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cuimeng Tian
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jiaqiang Huang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- College of Life Sciences, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ji Ming Wang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Chen K, Yoshimura T, Yao X, Gong W, Huang J, Dzutsev AK, McCulloch J, O'hUigin C, Bian XW, Trinchieri G, Wang JM. Distinct contributions of cathelin-related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. J Pathol 2021; 253:339-350. [PMID: 33104252 PMCID: PMC7898386 DOI: 10.1002/path.5572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
The cathelin‐related antimicrobial peptide CRAMP protects the mouse colon from inflammation, inflammation‐associated carcinogenesis, and disrupted microbiome balance, as shown in systemic Cnlp−/− mice (also known as Camp−/− mice). However, the mechanistic basis for the role and the cellular source of CRAMP in colon pathophysiology are ill defined. This study, using either epithelial or myeloid conditional Cnlp−/−mice, demonstrated that epithelial cell‐derived CRAMP played a major role in supporting normal development of colon crypts, mucus production, and repair of injured mucosa. On the other hand, myeloid cell‐derived CRAMP potently supported colon epithelial resistance to bacterial invasion during acute inflammation with exacerbated mucosal damage and higher rate of mouse mortality. Therefore, a well concerted cooperation of epithelial‐ and myeloid‐derived CRAMP is essential for colon mucosal homeostasis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,Laboratory of Cancer and Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, PR China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Jiaqiang Huang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,College of Life Sciences, Beijing Jiaotong University, Beijing, PR China
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Colm O'hUigin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, PR China
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,Laboratory of Cancer and Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
19
|
Tian C, Chen K, Gong W, Yoshimura T, Huang J, Wang JM. The G-Protein Coupled Formyl Peptide Receptors and Their Role in the Progression of Digestive Tract Cancer. Technol Cancer Res Treat 2020; 19:1533033820973280. [PMID: 33251986 PMCID: PMC7705772 DOI: 10.1177/1533033820973280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a causative factor of many cancers, although it
originally acts as a protective host response to the loss of tissue homeostasis.
Many inflammatory conditions predispose susceptible cells, most of which are of
epithelial origin, to neoplastic transformation. There is a close correlation
between digestive tract (DT) cancer and chronic inflammation, such as esophageal
adenocarcinoma associated with Barrett’s esophagus, helicobacter
pylori infection as the cause of stomach cancer, hepatitis leading
to liver cirrhosis and subsequent cancer, and colon cancer linking to
inflammatory bowel diseases and schistosomiasis. A prominent
feature of malignant transformation of DT tract epithelial cells is their
adoption of somatic gene mutations resulting in abnormal expression of proteins
that endow the cells with unlimited proliferation as well as increased motility
and invasive capabilities. Many of these events are mediated by Gi-protein
coupled chemoattractant receptors (GPCRs) including formyl peptide receptors
(FPRs in human, Fprs in mice). In this article, we review the current
understanding of FPRs (Fprs) and their function in DT cancer types as well as
their potential as therapeutic targets.
Collapse
Affiliation(s)
- Cuimeng Tian
- Department of Radiation Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China.,Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Keqiang Chen
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jiaqiang Huang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,Laboratory of Cancer Basic Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ji Ming Wang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
20
|
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol 2020; 187:114350. [PMID: 33253643 DOI: 10.1016/j.bcp.2020.114350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that ion channels have a crucial role in tumors, either as promoters of cancer cell growth, or modulators of immune cell functions, or both. Among ion channels, P2X receptors have a special status because they are gated by ATP, a common and abundant component of the tumor microenvironment. Furthermore, one P2X receptor, i.e. P2X7, may also function as a conduit for ATP release, thus fuelling the increased extracellular ATP level in the tumor interstitium. These findings show that P2X receptors and extracellular ATP are indissoluble partners and key regulators of tumor growth, and suggest the exploitation of the extracellular ATP-P2X partnership to develop innovative therapeutic approaches to cancer.
Collapse
|
21
|
Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines 2020; 8:biomedicines8110502. [PMID: 33207631 PMCID: PMC7696078 DOI: 10.3390/biomedicines8110502] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract carries a large number of microorganisms associated with complex metabolic processes and interactions. Although antibiotic treatment is crucial for combating infections, its negative effects on the intestinal microbiota and host immunity have been shown to be of the utmost importance. Multiple studies have recognized the adverse consequences of antibiotic use upon the gut microbiome in adults and neonates, causing dysbiosis of the microbiota. Repeated antibiotic treatments in clinical care or low-dosage intake from food could be contributing factors in this issue. Researchers in both human and animal studies have strived to explain this multifaceted relationship. The present review intends to elucidate the axis of the gastrointestinal microbiota and antibiotics resistance and to highlight the main aspects of the issue.
Collapse
|