1
|
Benítez-García C, Martínez-García D, Kotev M, Pérez-Hernández M, Westermaier Y, Díaz L, Korrodi-Gregório L, Fontova P, Torres AA, Pérez-Tomás R, García-Valverde M, Quesada R, Soliva R, Soto-Cerrato V. Identification of the atypical antipsychotic Asenapine as a direct survivin inhibitor with anticancer properties and sensitizing effects to conventional therapies. Biomed Pharmacother 2025; 182:117756. [PMID: 39693907 DOI: 10.1016/j.biopha.2024.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Therapy resistance in human cancers is a major limitation in Clinical Oncology. In this regard, overexpression of anti-apoptotic proteins, such as survivin, has been described in several tumors, contributing to this clinical issue. Survivin has a dual role in key cellular functions, inducing cell cycle progression and inhibiting apoptosis; thus, survivin is an attractive target for cancer therapy. Therefore, we focused on identifying and validating a novel specific, directly binding survivin inhibitor for cancer treatment and tumor sensitization to conventional proapoptotic therapies. In this work, we conducted a structure-based high-throughput virtual screening at the survivin homodimerization domain. Asenapine Maleate (AM), an approved drug for central nervous system diseases, was identified as a direct binder of the survivin homodimerization domain and it significantly affected cell viability of lung, colon, and brain cancer cell lines. Direct interaction of AM to survivin protein was corroborated by surface plasmon resonance and a specific survivin protein decrease was observed in cancer cells, compared to other inhibitors of apoptosis proteins. Therapeutic in vivo studies showed an impairment of tumor growth in AM-treated mice. Finally, a synergistic anticancer effect was detected in vitro when combined with different conventional chemotherapies, and in vivo studies showed higher antitumor effects when combined with cisplatin. Altogether, our results identify AM as a specific direct binding inhibitor of survivin, showing anticancer properties in vitro and in vivo and sensitizing effects when combined with cisplatin, opening the possibility of repositioning this approved drug for cancer treatment.
Collapse
Affiliation(s)
- Cristina Benítez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Martin Kotev
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Yvonne Westermaier
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Luis Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Ana Aurora Torres
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | | | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
2
|
Taskiran A, Oktem G, Demir A, Oltulu F, Ozcinar E, Duzagac F, Guven U, Karakoc E, Cakir A, Ayla S, Guven S, Acikgoz E. Embryonic microenvironment suppresses YY1 and YY1-related genes in prostate cancer stem cells. Pathol Res Pract 2024; 260:155467. [PMID: 39047662 DOI: 10.1016/j.prp.2024.155467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Yin yang 1 (YY1), a transcription factor, plays crucial roles in cell fate specification, differentiation, and pluripotency during embryonic development. It is also involved in tumorigenesis, drug resistance, metastasis, and relapse caused by cancer stem cells (CSCs), particularly in prostate cancer (PCa). Targeting YY1 could potentially eliminate prostate CSCs (PCSCs) and provide novel therapeutic approaches. PCa tissues often exhibit elevated YY1 expression levels, especially in high-grade cases. Notably, high-grade PCa tissues from 58 PCa patients and CD133high/CD44high PCSCs isolated from DU145 PCa cell line by FACS both showed significantly increased YY1 expression as observed through immunofluorescence staining, respectively. To investigate the embryonic microenvironment impact on YY1 expression in CSC populations, firstly PCSCs were microinjected into the inner cell mass of blastocysts and then PCSCs were co-cultured with blastocysts. Next Generation Sequencing was used to analyze alterations in YY1 and related gene expressions. Interestingly, exposure to the embryonic microenvironment significantly reduced the expressions of YY1, YY2, and other relevant genes in PCSCs. These findings emphasize the tumor-suppressing effects of the embryonic environment by downregulating YY1 and YY1-related genes in PCSCs, thus providing promising strategies for PCa therapy. Through elucidating the mechanisms involved in embryonic reprogramming and its effects on YY1 expression, this research offers opportunities for further investigation into focused therapies directed against PCSCs, therefore enhancing the outcomes of PCa therapy. As a result, PCa tumors may benefit from YY1 and associated genes as a novel therapeutic target.
Collapse
Affiliation(s)
- Aysegul Taskiran
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Gulperi Oktem
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey; Ege University Institute of Health Sciences Department of Stem Cell, İzmir 35100, Turkey
| | - Aleyna Demir
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Fatih Oltulu
- Ege University Faculty of Medicine Department of Histology and Embryology, İzmir 35100, Turkey
| | - Emine Ozcinar
- İzmir Tinaztepe University Department of Histology and Embryology, İzmir 35400, Turkey
| | - Fahriye Duzagac
- University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Prevention, Texas, Houston, TX 77030, USA
| | - Ummu Guven
- Università degli Studi di Milano Department of Biosciences, Milan 20122, Italy
| | - Emre Karakoc
- Wellcome Sanger Institute Translational Cancer Genomics, Hinxton, Cambridge CB10 1SA, UK
| | - Asli Cakir
- Istanbul Medipol University Faculty of Medicine Department of Pathology, İstanbul 34810, Turkey
| | - Sule Ayla
- Istanbul Medeniyet University Faculty of Medicine Department of Histology and Embryology, İstanbul 34700, Turkey
| | - Selcuk Guven
- Necmettin Erbakan University Meram Medical Faculty Department of Urology, Konya 42090, Turkey
| | - Eda Acikgoz
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Histology and Embryology, Van 65090, Turkey.
| |
Collapse
|
3
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
5
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
6
|
A Systematic Pan-Cancer Analysis of YY1 Aberrations and their Relationship with Clinical Outcome, Tumor Microenvironment, and Therapeutic Targets. J Immunol Res 2022; 2022:5826741. [PMID: 35791393 PMCID: PMC9250692 DOI: 10.1155/2022/5826741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Yin-Yang 1 (YY1) has a crucial function in the development of several malignancies, according to recent research. However, nothing is known about its aberrant expression and prognostic significance in human pan-cancer. We first explored the potential carcinogenic effect of YY1 in 33 cancers using the cancer genome atlas (TCGA) project and gene expression omnibus (GEO) datasets in this research. Then, we contained a variety of elements, for instance, gene expression, the state of survival, gene alterations, protein phosphorylation, immune infiltration, and related cellular pathways, and used a series of bioinformatics methods to investigate the underlying molecular mechanism of YY1 in the etiology or clinical prognosis of various malignancies. In most malignancies, YY1 was expressed at high levels, and the level of YY1 expression was statistically associated with the prognosis of tumor patients. The S118 site of YY1 implied higher phosphorylation expression in breast cancer, colon cancer, uterine corpus endometrial carcinoma (UCEC), and lung adenocarcinoma (LUAD) tumor tissues, but lower phosphorylation levels in ovarian cancer and clear cell carcinoma tumor tissues. For S247, higher phosphorylation levels were found in colon cancer, UCEC, and LUAD tumor tissue, and lower phosphorylation expression was found in clear cell carcinoma tumor tissue. In TCGA database, YY1 expression in BRCA, BRCA-LumA, BRCA-LumB, CESC, CHOL, COAD, ESCA, HNSC, HNSC-HPV-, KIRP, LGG, LIHC, and PAAD tumor tissues was a statistically significant positive connection of the estimated infiltration value of cancer-associated fibroblasts but a negative correlation in TGCT. In addition, the functional mechanism of YY1 also involves viral carcinogenesis and ribonucleic acid (RNA) metabolism related functions. Our first pan-cancer analysis offers a pretty comprehensive knowledge of YY1’s oncogenic involvement in various cancers.
Collapse
|
7
|
Berberine Protects against TNF- α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF- κB/YY1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6518355. [PMID: 35003308 PMCID: PMC8741384 DOI: 10.1155/2021/6518355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.
Collapse
|
8
|
Zhou S, Qu KL, Li JA, Chen SL, Zhang YG, Zhu C, Jin H, Wang Y, Pang Q, Liu HC. YY1 activates EMI2 and promotes the progression of cholangiocarcinoma through the PI3K/Akt signaling axis. Cancer Cell Int 2021; 21:699. [PMID: 34933678 PMCID: PMC8693494 DOI: 10.1186/s12935-021-02328-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is one of the deadliest cancers of the digestive tract. The prognosis of CCA is poor and the 5-year survival rate is low. Bioinformatic analysis showed that early mitotic inhibitor 2 (EMI2) was overexpressed in CCA but the underlying mechanism is not known. METHODS The data on bile duct carcinoma from TCGA and GEO databases were used to detect the expression of EMI2. The transcription factors of EMI2 were predicted using JASPAR and PROMO databases. Among the predicted transcription factors, YY1 has been rarely reported in cholangiocarcinoma, and was verified using the luciferase reporter gene assay. RT-PCR was performed to predict the downstream pathway of EMI2, and PI3K/Akt was suspected to be associated with it. Subsequently, in vivo and in vitro experiments were conducted to verify the effects of silencing and overexpressing EMI2 and YY1 on the proliferation, invasion, and metastasis of the bile duct cancer cells. RESULTS EMI2 was highly expressed in CCA. Silencing EMI2 inhibited the proliferation, invasion, and migration of CCA cells, arrested cell cycle in the G1 phase, and promoted of apoptosis. The luciferase reporter gene assay showed that YY1 bound to the promoter region of EMI2, and after silencing YY1, the expression of EMI2 decreased and the progression of CCA was inhibited. Moreover, key proteins in the PI3K/Akt signaling pathway decreased after silencing EMI2. CONCLUSION EMI2 may be one of the direct targets of YY1 and promotes the progression of CCA through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Kang Lin Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Jin Ang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Shi Lei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Yi Gang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Chao Zhu
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China
| | - Hao Jin
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China
| | - Yong Wang
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China.
| | - Hui Chun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China. .,The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China.
| |
Collapse
|
9
|
Li Y, Lu W, Yang J, Edwards M, Jiang S. Survivin as a biological biomarker for diagnosis and therapy. Expert Opin Biol Ther 2021; 21:1429-1441. [PMID: 33877952 DOI: 10.1080/14712598.2021.1918672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Survivin (SVN) is a member of the inhibitor of apoptosis (IAP) protein family that promotes cellular proliferation and inhibits apoptosis. Overexpression of SVN is associated with autoimmune disease, hyperplasia, and tumors and can be used as a biomarker in these diseases. SVN is widely recognized as a tumor-associated antigen (TAA) and has become an important target for cancer diagnosis and treatment.Areas covered: We reviewed SVN research progress from the PubMed and clinical trials focused on SVN from https://clinicaltrials.gov since 2000 and anticipate future developments in the field. The trials reviewed cover various modalities including diagnostics for early detection and disease progression, small molecule inhibitors of the SVN pathway and immunotherapy targeting SVN epitopes.Expert opinion: The most promising developments involve anti-SVN immunotherapy, with several therapeutic SVN vaccines under evaluation in phase I/II trials. SVN is an important new immune-oncology target that expands the repertoire of individualized combination treatments for cancer.
Collapse
Affiliation(s)
- Yuming Li
- Department of Oncology, University of Oxford, Oxford, UK.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenshu Lu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jiarun Yang
- Department of Oncology, University of Oxford, Oxford, UK
| | - Mark Edwards
- Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| | - Shisong Jiang
- Department of Oncology, University of Oxford, Oxford, UK.,Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| |
Collapse
|
10
|
Mei C, Jiang X, Gu Y, Wu X, Ma W, Chen X, Wang G, Yao Y, Liu Y, Zhang Z, Yuan Y. YY1-mediated reticulocalbin-2 upregulation promotes the hepatocellular carcinoma progression via activating MYC signaling. Am J Cancer Res 2021; 11:2238-2251. [PMID: 34094681 PMCID: PMC8167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common digestive tumor with high fatality worldwide. Previous studies have shown that Reticulocalbin-2 (RCN2) was a crucial factor for HCC proliferation, but invasion and migration mechanism of RCN2 contributing to HCC is poorly investigated. In this study, we estimated the RCN2 expression in both patient tissues and cell lines by polymerase chain reaction (PCR) and western blotting (WB), as well as the clinical information of HCC patients from public databases. Biological function induced by RCN2 in vitro and vivo was also researched through multiple functional experiments. Upstream and downstream signal of RCN2 was identified by bioinformatics. We found that up-regulated RCN2 was related to poorer prognosis in HCC patients and attached significance to HCC proliferation, invasion and migration. Luciferase reporter assay and chromatin immunoprecipitation validated that YY1 as the upstream transcription factor of RCN2, facilitating the expression of RCN2. Gene set enrichment analysis indicated that HCC progression induced by RCN2 might be related to MYC signaling. Furthermore, we demonstrated RCN2 reduced proteasomal degradation of MYC and lead to HCC progression. The effects of overexpressed RCN2 in HCC were attenuated by MYC silencing. In conclusion, our study highlighted the vital role of RCN2 in tumor progression and the potential benefit for the treatment of HCC.
Collapse
Affiliation(s)
- Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Yang Gu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Zhonglin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| |
Collapse
|
11
|
Chen Q, Wang WJ, Jia YX, Yuan H, Wu PF, Ge WL, Meng LD, Huang XM, Shen P, Yang TY, Miao Y, Zhang JJ, Jiang KR. Effect of the transcription factor YY1 on the development of pancreatic endocrine and exocrine tumors: a narrative review. Cell Biosci 2021; 11:86. [PMID: 33985581 PMCID: PMC8120816 DOI: 10.1186/s13578-021-00602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic tumors are classified into endocrine and exocrine types, and the clinical manifestations in patients are nonspecific. Most patients, especially those with pancreatic ductal adenocarcinoma (PDAC), have lost the opportunity to receive for the best treatment at the time of diagnosis. Although chemotherapy and radiotherapy have shown good therapeutic results in other tumors, their therapeutic effects on pancreatic tumors are minimal. A multifunctional transcription factor, Yin-Yang 1 (YY1) regulates the transcription of a variety of important genes and plays a significant role in diverse tumors. Studies have shown that targeting YY1 can improve the survival time of patients with tumors. In this review, we focused on the mechanism by which YY1 affects the occurrence and development of pancreatic tumors. We found that a YY1 mutation is specific for insulinomas and has a role in driving the degree of malignancy. In addition, changes in the circadian network are a key causative factor of PDAC. YY1 promotes pancreatic clock progression and induces malignant changes, but YY1 seems to act as a tumor suppressor in PDAC and affects many biological behaviors, such as proliferation, migration, apoptosis and metastasis. Our review summarizes the progress in understanding the role of YY1 in pancreatic endocrine and exocrine tumors and provides a reasonable assessment of the potential for therapeutic targeting of YY1 in pancreatic tumors.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wu-Jun Wang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | | | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng-Fei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Tao-Yue Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Vivarelli S, Falzone L, Ligresti G, Candido S, Garozzo A, Magro GG, Bonavida B, Libra M. Role of the Transcription Factor Yin Yang 1 and Its Selectively Identified Target Survivin in High-Grade B-Cells Non-Hodgkin Lymphomas: Potential Diagnostic and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21176446. [PMID: 32899428 PMCID: PMC7504013 DOI: 10.3390/ijms21176446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are often characterized by the development of resistance to chemotherapeutic drugs and/or relapse. During drug-induced apoptosis, Yin Yang 1 (YY1) transcription factor might modulate the expression of apoptotic regulators genes. The present study was aimed to: (1) examine the potential oncogenic role of YY1 in reversing drug resistance in B-NHLs; and (2) identify YY1 transcriptional target(s) that regulate the apoptotic pathway in B-NHLs. Predictive analyses coupled with database-deposited data suggested that YY1 binds the promoter of the BIRC5/survivin anti-apoptotic gene. Gene Expression Omnibus (GEO) analyses of several B-NHL repositories revealed a conserved positive correlation between YY1 and survivin, both highly expressed, especially in aggressive B-NHLs. Further validation experiments performed in Raji Burkitt’s lymphomas cells, demonstrated that YY1 silencing was associated with survivin downregulation and sensitized the cells to apoptosis. Overall, our results revealed that: (1) YY1 and survivin are positively correlated and overexpressed in B-NHLs, especially in BLs; (2) YY1 strongly binds to the survivin promoter, hence survivin may be suggested as YY1 transcriptional target; (3) YY1 silencing sensitizes Raji cells to drug-induced apoptosis via downregulation of survivin; (4) both YY1 and survivin are potential diagnostic markers and therapeutic targets for the treatment of resistant/relapsed B-NHLs.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | - Giovanni Ligresti
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
| | - Saverio Candido
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
| | - Adriana Garozzo
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
- Laboratory of Virology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Gaetano Giuseppe Magro
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia”, University of Catania, 95123 Catania, Sicily, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Massimo Libra
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
- Correspondence: ; Tel.: +39-095-478-1271
| |
Collapse
|
13
|
Scarpa ES, Tasini F, Crinelli R, Ceccarini C, Magnani M, Bianchi M. The Ubiquitin Gene Expression Pattern and Sensitivity to UBB and UBC Knockdown Differentiate Primary 23132/87 and Metastatic MKN45 Gastric Cancer Cells. Int J Mol Sci 2020; 21:E5435. [PMID: 32751694 PMCID: PMC7432825 DOI: 10.3390/ijms21155435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and lethal cancers. Alterations in the ubiquitin (Ub) system play key roles in the carcinogenetic process and in metastasis development. Overexpression of transcription factors YY1, HSF1 and SP1, known to regulate Ub gene expression, is a predictor of poor prognosis and shorter survival in several cancers. In this study, we compared a primary (23132/87) and a metastatic (MKN45) GC cell line. We found a statistically significant higher expression of three out of four Ub coding genes, UBC, UBB and RPS27A, in MKN45 compared to 23132/87. However, while the total Ub protein content and the distribution of Ub between the conjugated and free pools were similar in these two GC cell lines, the proteasome activity was higher in MKN45. Ub gene expression was not affected upon YY1, HSF1 or SP1 small interfering RNA (siRNA) transfection, in both 23132/87 and MKN45 cell lines. Interestingly, the simultaneous knockdown of UBB and UBC mRNAs reduced the Ub content in both cell lines, but was more critical in the primary GC cell line 23132/87, causing a reduction in cell viability due to apoptosis induction and a decrease in the oncoprotein and metastatization marker β-catenin levels. Our results identify UBB and UBC as pro-survival genes in primary gastric adenocarcinoma 23132/87 cells.
Collapse
Affiliation(s)
- Emanuele Salvatore Scarpa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (F.T.); (R.C.); (C.C.); (M.M.); (M.B.)
| | | | | | | | | | | |
Collapse
|
14
|
Endothelial-specific YY1 governs sprouting angiogenesis through directly interacting with RBPJ. Proc Natl Acad Sci U S A 2020; 117:4792-4801. [PMID: 32075915 DOI: 10.1073/pnas.1916198117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1 iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1 iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.
Collapse
|
15
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
16
|
Chen Q, Yang C, Chen L, Zhang JJ, Ge WL, Yuan H, Meng LD, Huang XM, Shen P, Miao Y, Jiang KR. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer 2019; 121:912-921. [PMID: 31631174 PMCID: PMC6888832 DOI: 10.1038/s41416-019-0604-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PDAC) is a highly invasive cancer with poor prognosis. Recent research has found that the transcription factor Yin Yang 1 (YY1) plays an inhibitory role in the development of pancreatic cancer. It has been reported that tubulin polymerisation-promoting protein (TPPP) plays an indispensable role in a variety of tumours, but its expression and role in pancreatic cancer have not yet been elucidated. METHODS In this study, we performed ChIP-sequencing and found that YY1 directly binds to the promoter region of TPPP. The expression of TPPP in pancreatic cancer was detected by western blotting and immunohistochemistry. Four-week-old male BALB/c-nude mice were used to assess the effect of TPPP on pancreatic cancer. RESULTS Immunohistochemistry revealed that TPPP was expressed at low levels in pancreatic cancer tissues, and was associated with blood vessel invasion. The results from vivo experiments have showed that TPPP could enhance the migration and invasion of pancreatic cancer. Further experiments showed that YY1 could inhibit the migration, invasion and angiogenesis of pancreatic cancer cells by downregulating TPPP via p38/MAPK and PI3K/AKT pathways. CONCLUSION Our study demonstrates that TPPP may act as a promoter and may serve as a novel target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chuang Yang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Yang T, Shu F, Yang H, Heng C, Zhou Y, Chen Y, Qian X, Du L, Zhu X, Lu Q, Yin X. YY1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis. Metabolism 2019; 96:33-45. [PMID: 31028762 DOI: 10.1016/j.metabol.2019.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Renal fibrosis promotes the development of diabetic nephropathy (DN). A growing number of studies have reported that Yin Yang 1 (YY1), which is involved in cellular proliferation and differentiation, plays a crucial role in the pathogenesis of many diseases, such as pulmonary fibrosis, hepatic steatosis and cancer. METHODS We detected the expression of YY1 under various glucose concentration and time gradient conditions. Rapamycin was used to verify the mTORC1/p70S6K/YY1 signaling pathway in HK-2 cells. We used db/db mice to examine the connection between renal fibrosis and YY1. A luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to identify whether YY1 directly regulated α-SMA by binding to the α-SMA promoter. RNA silencing and overexpression were performed by using a YY1 expression/knockdown plasmid to investigate the function of YY1 in renal fibrosis of DN. RESULTS YY1 expression and subsequent nuclear translocation were upregulated in a glucose- and time-dependent manner via the mTORC1/p70S6K signaling pathway in HK-2 cells. YY1 expression and nuclear translocation was significantly upregulated in db/db mice. Furthermore, YY1 upregulated α-SMA expression and activity in high-glucose-cultured HK-2 cells. Overexpression of YY1 promoted renal fibrosis in db/m mice mainly by upregulating α-SMA expression and inducing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Finally, downregulation of YY1 reversed renal fibrosis by improving EMT in vivo and in vitro. CONCLUSIONS These results reveal that upregulation of YY1 plays a critical role in HG-induced deregulation of EMT-associated protein expression, which finally results in renal fibrosis of DN. Therefore, decreasing YY1 expression might represent a new therapeutic target for diabetic nephropathy-induced renal fibrosis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Fanglin Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yibing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|