1
|
Li Z, Sun S, Wang Y, Hua Y, Liu M, Zhou Y, Zhong L, Li T, Zhao H, Zhou X, Zeng X, Chen Q, Li J. PA28γ coordinates the cross-talk between cancer-associated fibroblasts and tumor cells to promote OSCC progression via HDAC1/E2F3/IGF2 signaling. Cancer Lett 2024; 594:216962. [PMID: 38768680 DOI: 10.1016/j.canlet.2024.216962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
PA28γ overexpression is aberrant and accompanied by poor patient prognosis in various cancers, the precise regulatory mechanism of this crucial gene in the tumor microenvironment remains incompletely understood. In this study, using oral squamous cell carcinoma as a model, we demonstrated that PA28γ exhibits high expression in cancer-associated fibroblasts (CAFs), and its expression significantly correlates with the severity of clinical indicators of malignancy. Remarkably, we found that elevated levels of secreted IGF2 from PA28γ+ CAFs can enhance stemness maintenance and promote tumor cell aggressiveness through the activation of the MAPK/AKT pathway in a paracrine manner. Mechanistically, PA28γ upregulates IGF2 expression by stabilizing the E2F3 protein, a transcription factor of IGF2. Further mechanistic insights reveal that HDAC1 predominantly mediates the deacetylation and subsequent ubiquitination and degradation of E2F3. Notably, PA28γ interacts with HDAC1 and accelerates its degradation via a 20S proteasome-dependent pathway. Additionally, PA28γ+ CAFs exert an impact on the tumor immune microenvironment by secreting IGF2. Excitingly, our study suggests that targeting PA28γ+ CAFs or secreted IGF2 could increase the efficacy of PD-L1 therapy. Thus, our findings reveal the pivotal role of PA28γ in cell interactions in the tumor microenvironment and propose novel strategies for augmenting the effectiveness of immune checkpoint blockade in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Zaiye Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yufei Hua
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Berrino C, Omar A. Unravelling the Mysteries of the Sonic Hedgehog Pathway in Cancer Stem Cells: Activity, Crosstalk and Regulation. Curr Issues Mol Biol 2024; 46:5397-5419. [PMID: 38920995 PMCID: PMC11202538 DOI: 10.3390/cimb46060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays a critical role in normal development and tissue homeostasis, guiding cell differentiation, proliferation, and survival. Aberrant activation of this pathway, however, has been implicated in the pathogenesis of various cancers, largely due to its role in regulating cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells with the ability to self-renew, differentiate, and initiate tumour growth, contributing significantly to tumorigenesis, recurrence, and resistance to therapy. This review focuses on the intricate activity of the Shh pathway within the context of CSCs, detailing the molecular mechanisms through which Shh signalling influences CSC properties, including self-renewal, differentiation, and survival. It further explores the regulatory crosstalk between the Shh pathway and other signalling pathways in CSCs, highlighting the complexity of this regulatory network. Here, we delve into the upstream regulators and downstream effectors that modulate Shh pathway activity in CSCs. This review aims to cast a specific focus on the role of the Shh pathway in CSCs, provide a detailed exploration of molecular mechanisms and regulatory crosstalk, and discuss current and developing inhibitors. By summarising key findings and insights gained, we wish to emphasise the importance of further elucidating the interplay between the Shh pathway and CSCs to develop more effective cancer therapies.
Collapse
|
3
|
Zhang B, Ye Q. Linc00662 sponges miR-15b-5p to promote hypopharyngeal squamous cell carcinoma progression by facilitating cancer stem cell-like phenotypes. J Cancer 2024; 15:3781-3793. [PMID: 38911389 PMCID: PMC11190759 DOI: 10.7150/jca.95852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are associated with multiple head and neck tumors and play important roles in cancer. This study explored the molecular mechanism of Linc00662 in hypopharyngeal squamous cell carcinoma (HSCC). Methods: Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect gene expression in HSCC tissues. The viability and proliferation of tumor cells were measured using CCK-8 assays. HSCC cell apoptosis was measured using flow cytometry and western blotting. Cell stemness was examined using the sphere formation assay. A xenograft tumor model was established to investigate the role of Linc00662 in vivo. Results: The expression level of Linc00662 in HSCC tissues was significantly higher than that in adjacent normal tissues. The expression of Linc00662 had no significant relationship with the tumor stage. Patients with high Linc00662 expression were found to have shorter overall survival than those with low Linc00662 expression. Linc00662 over-expression promoted cell viability and inhibited apoptosis. Using online databases and a dual luciferase reporter, miR-15b-5p was confirmed as a potential downstream sponge of Linc00662. Moreover, Linc00662 was negatively associated with miR-15b-5p in HSCC cells. Depletion of miR-15b-5p can reverse the function of Linc00662 in vivo and in vitro. Furthermore, Linc00662 promotes tumor growth, which was abolished by miR-15b-5p mimics. Importantly, the stemness of cancer stem cells was mediated by the Linc00662/miR-15b-5p axis. Conclusion: Patients with HSCC with high Linc00662 showed poor prognosis and high Linc00662 induced stemness of tumor cells by targeting miR-15b-5p. Linc00662 may serve as a novel diagnostic and target marker for head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Qing Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
4
|
I A, Raghavan Pillai VB, P Joseph A, Ramani P, P J, Ramalingam K. Identification and Evaluation of Cancer Stem Cells in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia Using NANOG: An Immunohistochemical Study. Cureus 2024; 16:e55111. [PMID: 38558704 PMCID: PMC10979711 DOI: 10.7759/cureus.55111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Squamous cell carcinoma of the oral cavity may show precursor lesions, termed as potentially malignant disorders, of which leukoplakia is the most frequent one. Oral leukoplakia is a clinical diagnosis for which the histological diagnosis may be either hyperplasia or oral epithelial dysplasia (OED) and sometimes even oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs), identified in various tumors, are a specific group of cells that exhibit the properties of self-renewal and differentiation. Among the various biomarkers that identify CSCs, the transcription factor NANOG is considered to be a significant one. AIM In this study, we intend to identify and compare the immunohistochemical expression of NANOG in OSCC, OED, and normal oral mucosa. METHODOLOGY Tissue blocks of OSCC (n=28), OED (n=28), and normal oral mucosa (n=28) were used in this study. Specimens were immunohistochemically analyzed for NANOG expression. The results were statistically analyzed using one-way ANOVA, Games-Howell post hoc, and Student t-test. Statistical Product and Service Solutions (SPSS, version 21; IBM SPSS Statistics for Windows, Armonk, NY) software was used for performing the statistical analysis, and the level of significance was set as 0.05. OBSERVATIONS NANOG expression was higher in OSCC when compared to oral dysplasias and normal oral mucosa, in decreasing order. A significantly higher histo-score and labeling index score were observed in OSCC and oral dysplasias compared to normal oral mucosa (p=<0.001). CONCLUSION The expression levels of NANOG were positively correlated with disease progression in OSCC, implicating that NANOG can be used as a surrogate marker of oral oncogenesis and prognosis. Therefore, decoding the molecular mechanisms of NANOG regulation in the progression of cancer helps in developing new therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Arya I
- Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Trivandrum, IND
| | - Varun B Raghavan Pillai
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
- Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Trivandrum, IND
| | - Anna P Joseph
- Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Trivandrum, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jayanthi P
- Oral and Maxillofacial Pathology, Azeezia College of Dental Sciences and Research, Kollam, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
6
|
Dai Y, Wu Z, Chen Y, Ye X, Wang C, Zhu H. OCT4's role and mechanism underlying oral squamous cell carcinoma. J Zhejiang Univ Sci B 2023; 24:796-806. [PMID: 37701956 PMCID: PMC10500100 DOI: 10.1631/jzus.b2200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 09/14/2023]
Abstract
Oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck, ranks sixth worldwide in terms of cancers with the most negative impact, owing to tumor relapse rates, cervical lymphnode metastasis, and the lack of an efficacious systemic therapy. Its prognosis is poor, and its mortality rate is high. Octamer-binding transcription factor 4 (OCT4) is a member of the Pit-Oct-Unc (POU) family and is a key reprogramming factor that produces a marked effect in preserving the pluripotency and self-renewal state of embryonic stem cells (ESCs). According to recent studies, OCT4 participates in retaining the survival of OSCC cancer stem cells (CSCs), which has far-reaching implications for the occurrence, recurrence, metastasis, and prognosis of oral carcinogenesis. Therefore, we summarize the structure, subtypes, and function of OCT4 as well as its role in the occurrence, progression, and prognosis of OSCC.
Collapse
Affiliation(s)
- Yuwei Dai
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ziqiong Wu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yitong Chen
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinjian Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Chaowei Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Nguyen A, Sung Y, Lee SH, Martin CE, Srikanth S, Chen W, Kang MK, Kim RH, Park NH, Gwack Y, Kim Y, Shin KH. Orai3 Calcium Channel Contributes to Oral/Oropharyngeal Cancer Stemness through the Elevation of ID1 Expression. Cells 2023; 12:2225. [PMID: 37759448 PMCID: PMC10527097 DOI: 10.3390/cells12182225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Youngjae Sung
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Charlotte Ellen Martin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Kavitha L, Vijayashree Priyadharsini J, Kattula D, Rao UKM, Balaji Srikanth R, Kuzhalmozhi M, Ranganathan K. Expression of CD44 in Head and Neck Squamous Cell Carcinoma-An In-Silico Study. Glob Med Genet 2023; 10:221-228. [PMID: 37593530 PMCID: PMC10431972 DOI: 10.1055/s-0043-1772459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Introduction CD44, a multistructural and multifunctional transmembrane glycoprotein, is a promising cancer stem cell (CSC) marker that regulates the properties of CSCs, including self-renewal, tumor initiation, and metastasis, and confers resistance to chemotherapy and radiotherapy. The aim of the present study was to evaluate the gene and protein expression of CD44 and explore its prognostic value in head and neck squamous cell carcinoma (HNSCC). Methodology The present observational study employs computational tools for analysis. The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma dataset (520 primary HNSCC and 44 normal tissues) from the University of Alabama at Birmingham Cancer platform was used to study the association of CD44 mRNA transcript levels with various clinicopathological characteristics of HNSCC including age, gender, tumor grade, tumor stage, human papillomavirus (HPV) status, p53 mutation status, and overall survival. The CD44 protein expression in HNSCC and normal tissues was ascertained using the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium Head-and-Neck cancer dataset (108 primary HNSCC and 71 normal tissues). Results CD44 mRNA transcript and protein expression levels were significantly higher in HNSCC tissues than in normal tissues, and high CD44 expression was correlated with poor survival. CD44 was upregulated in Stage 1 and Grade 2 HNSCC compared with other stages and grades. Overexpression of CD44 was observed in HPV-negative and TP53-positive mutant status in HNSCC. Conclusion The pleiotropic roles of CD44 in tumorigenesis urge the need to explore its differential expression in HNSCC. The study concludes that CD44 can be a potential diagnostic and prognostic biomarker for HNSCC and offer new molecular targets for CD44-targeted therapy for cancer management.
Collapse
Affiliation(s)
- Loganathan Kavitha
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India
| | - Jayaseelan Vijayashree Priyadharsini
- Clinical Genetics Lab, Centre for Cellular and Molecular Research (The Blue lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, Tamil Nadu, India
| | - Deepthi Kattula
- Department of Conservative Dentistry and Endodontics, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India
| | - Umadevi Krishna Mohan Rao
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India
| | - Rajabather Balaji Srikanth
- Department of Oral and Maxillofacial Surgery, Balaji Dental Clinic, Tambaram West, Tambaram, Chennai, Tamil Nadu, India
| | - Manogaran Kuzhalmozhi
- Department of Pathology, Aringnar Anna Memorial Cancer Research Institute, Kanchipuram, Karapettai, Tamil Nadu, India
| | - Kannan Ranganathan
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, Samuel D, Arora RK, Matthews TW, Chandarana S, Hart R, Dort JC, Biernaskie J, Neri P, Hyrcza MD, Bose P. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun 2023; 14:5029. [PMID: 37596273 PMCID: PMC10439131 DOI: 10.1038/s41467-023-40271-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is conserved across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Additionally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases ( http://www.pboselab.ca/spatial_OSCC/ ; http://www.pboselab.ca/dynamo_OSCC/ ) that can be foundational for developing novel targeted therapies.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christian Cao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehul Kumar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ayan Chanda
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reid McNeil
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Divya Samuel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahul K Arora
- Center for Health Informatics, University of Calgary, Calgary, AB, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - T Wayne Matthews
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Hart
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph C Dort
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Martin D Hyrcza
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
11
|
Zhang Z, Zhang Y, Hu X, Chen Y, Zhuang L, Zhang S. ZNF677 inhibits oral squamous cell carcinoma growth and tumor stemness by regulating FOXO3a. Hum Cell 2023:10.1007/s13577-023-00910-w. [PMID: 37129799 DOI: 10.1007/s13577-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer with an increasing incidence worldwide. Zinc-finger proteins 677 (ZNF677) is involved in the progression and methylation of various cancers, but its role and mechanism in OSCC remain indeterminate. The expression of ZNF677 was analyzed by online database and immunohistochemistry, while the methylation level of ZNF677 was determined by the methylation-specific PCR. The role and mechanism of ZNF677 in the tumor cell growth, migration, invasion and stemness were addressed by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, Transwell, wound-healing, sphere‑formation, and western blot assays. In addition, its function was also investigated in a xenografted mice model. The results showed that ZNF677 was lowly expressed in OSCC with a hypermethylation level, which predicted poor overall survival in patients with HNSC. Upregulation of ZNF677 reduced the cell viability, Edu positive cells, numbers of invasion cells, the migration ability, numbers of spheres formation and the expression of proliferation, migration and stemness related proteins in CAL-27 and SCC25 cells. Mechanically, the relative levels of p-AKT/AKT were decreased and the levels of p-FOXO3a/FOXO3a were increased in both cells overexpressed with ZNF677, which were reversed by the SC79 treatment. Moreover, interference of FOXO3a recovered the suppressive effects of ZNF677 overexpression on cell proliferation, migration, invasion and stemness of OSCC cells. Furthermore, overexpression of ZNF677 reduced the tumor volume and weight, and the relative protein level of p-AKT/AKT with an increased level of p-FOXO3a/FOXO3a, and improved pathological symptoms in vivo. Collectively, ZNF677 suppressed OSCC cells growth, migration, invasion and stemness through inhibiting AKT/FOXO3a pathway.
Collapse
Affiliation(s)
- Zebiao Zhang
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China
| | - Ying Zhang
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China.
| | - Xiaoyan Hu
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, Fujian, China
| | - Yanru Chen
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China
| | - Liangliang Zhuang
- Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Quanzhou, 362000, Fujian, China
| | - Shuqin Zhang
- Department of Stomatology, Jinjiang Stomatological Hospital, Quanzhou, 362200, Fujian, China
| |
Collapse
|
12
|
Nguyen A, Kim AH, Kang MK, Park NH, Kim RH, Kim Y, Shin KH. Chronic Alcohol Exposure Promotes Cancer Stemness and Glycolysis in Oral/Oropharyngeal Squamous Cell Carcinoma Cell Lines by Activating NFAT Signaling. Int J Mol Sci 2022; 23:ijms23179779. [PMID: 36077186 PMCID: PMC9456298 DOI: 10.3390/ijms23179779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Anna H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| |
Collapse
|
13
|
Jang TH, Huang WC, Tung SL, Lin SC, Chen PM, Cho CY, Yang YY, Yen TC, Lo GH, Chuang SE, Wang LH. MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci 2022; 29:42. [PMID: 35706019 PMCID: PMC9202219 DOI: 10.1186/s12929-022-00824-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Background The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. Methods siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. Results Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin β4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of β-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin β4, active β-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. Conclusions A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/β-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00824-z.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Zhubei City, Hsinchu County, Taiwan.,Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City, Taiwan
| | - Sheng-Chieh Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Po-Ming Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Guo-Hsuen Lo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Lu-Hai Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Li Y, Wang W, Wu M, Zhu P, Zhou Z, Gong Y, Gu Y. LncRNA LINC01315 silencing modulates cancer stem cell properties and epithelial-to-mesenchymal transition in colorectal cancer via miR-484/DLK1 axis. Cell Cycle 2022; 21:851-873. [PMID: 35156543 PMCID: PMC8973332 DOI: 10.1080/15384101.2022.2033415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA long intergenic non-protein coding RNA 01315 (LncRNA LINC01315) has been found to be implicated in various cancers, but its role and functions in colorectal cancer (CRC) remain to be addressed. Data on LINC01315 expression in CRC were gathered using bioinformatics analysis, and cancer stem cells (CSCs) were sorted by aldehyde dehydrogenase (ALDH) assay and flow cytometry. Migration, invasion, and stemness of CSCs isolated from CRC cells after transfection were determined by scratch, Transwell, and sphere-formation assays, respectively. Tumor xenograft model was constructed. Target genes and potential-binding sites were predicted using online databases and further confirmed via dual-luciferase reporter assay. Relative factors expressions were determined via quantitative real-time polymerase-chain reaction and Western blot as needed. LINC01315 was high-expressed in CRC and ALDH+ cells. LINC01315 silencing suppressed the migration, invasion, and sphere formation of CRC cells and tumor growth, and downregulated expressions of CSC molecules (ALDH, cluster of difference 44 (CD44), Prominin, and sex determining region Y-box 2 (SOX2)), Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Vimentin but upregulated E-Cadherin expression. MiR-484 could competitively bind with LINC01315, and LINC01315 silencing promoted miR-484 expression. The level of Delta Like Non-Canonical Notch Ligand 1 (DLK1), the target gene of miR-484, was enhanced by overexpressed LINC01315 yet was suppressed by LINC01315 silencing. Also, DLK1 silencing reversed the effects of downregulated miR-484 on migration, invasion, sphere formation, and CSC molecules expressions in CRC cells. LINC01315 silencing modulated CSC properties and epithelial-to-mesenchymal transition via miR-484/DLK1 axis.
Collapse
Affiliation(s)
- Youran Li
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Wei Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Minna Wu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Ping Zhu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Zailong Zhou
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Yuxia Gong
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Yunfei Gu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China,CONTACT Yunfei GuJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing City, Jiangsu Province210029, China. +86-02586617141-71116
| |
Collapse
|
15
|
Kumar S, Rangarajan A, Pal D. Somatic mutation analyses of stem-like cells in gingivobuccal oral squamous cell carcinoma reveals DNA damage response genes. Genomics 2022; 114:110308. [DOI: 10.1016/j.ygeno.2022.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
|
16
|
Maurya M, Gupta V, Agarwal P, Kumar M, Sagar M, Raghuvanshi S, Gupta S. Expression of aldehyde dehydrogenase 1A1 in oral squamous cell carcinoma and its correlation with clinicopathological parameters. Natl J Maxillofac Surg 2022; 13:208-215. [PMID: 36051794 PMCID: PMC9426695 DOI: 10.4103/njms.njms_402_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 11/04/2022] Open
Abstract
Background: Materials and Methods: Results: Conclusion:
Collapse
|
17
|
Georgaki M, Theofilou VI, Pettas E, Stoufi E, Younis RH, Kolokotronis A, Sauk JJ, Nikitakis NG. Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:566-579. [PMID: 34518141 DOI: 10.1016/j.oooo.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 01/08/2023]
Abstract
The pathogenesis of oral cancer is a complex and multifactorial process that requires a deep understanding of the underlying mechanisms involved in the development and progress of malignancy. The ever-improving comprehension of the diverse molecular characteristics of cancer, the genetic and epigenetic alterations of tumor cells, and the complex signaling pathways that are activated and frequently cross talk open up promising horizons for the discovery and application of diagnostic molecular markers and set the basis for an era of individualized management of the molecular defects underlying and governing oral premalignancy and cancer. The purpose of this article is to review the key molecular concepts that are implicated in oral carcinogenesis, especially focusing on oral squamous cell carcinoma, and to review selected biomarkers that play a substantial role in controlling the so-called "hallmarks of cancer," with special reference to recent advances that shed light on their deregulation during the different steps of oral cancer development and progression.
Collapse
Affiliation(s)
- Maria Georgaki
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vasileios Ionas Theofilou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Efstathios Pettas
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleana Stoufi
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John J Sauk
- Professor Emeritus and Dean Emeritus, University of Louisville, Louisville, KY, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Notarstefano V, Belloni A, Sabbatini S, Pro C, Orilisi G, Monterubbianesi R, Tosco V, Byrne HJ, Vaccari L, Giorgini E. Cytotoxic Effects of 5-Azacytidine on Primary Tumour Cells and Cancer Stem Cells from Oral Squamous Cell Carcinoma: An In Vitro FTIRM Analysis. Cells 2021; 10:2127. [PMID: 34440896 PMCID: PMC8392608 DOI: 10.3390/cells10082127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
In the present study, the cytotoxic effects of 5-azacytidine on primary Oral Squamous Cell Carcinoma cells (OSCCs) from human biopsies, and on Cancer Stem Cells (CSCs) from the same samples, were investigated by an in vitro Fourier Transform InfraRed Microscospectroscopy (FTIRM) approach coupled with multivariate analysis. OSCC is an aggressive tumoral lesion of the epithelium, accounting for ~90% of all oral cancers. It is usually diagnosed in advanced stages, and this causes a poor prognosis with low success rates of surgical, as well as radiation and chemotherapy treatments. OSCC is frequently characterised by recurrence after chemotherapy and by the development of a refractoriness to some employed drugs, which is probably ascribable to the presence of CSCs niches, responsible for cancer growth, chemoresistance and metastasis. The spectral information from FTIRM was correlated with the outcomes of cytotoxicity tests and image-based cytometry, and specific spectral signatures attributable to 5-azacytidine treatment were identified, allowing us to hypothesise the demethylation of DNA and, hence, an increase in the transcriptional activity, together with a conformational transition of DNA, and a triggering of cell death by an apoptosis mechanism. Moreover, a different mechanism of action between OSSC and CSC cells was highlighted, probably due to possible differences between OSCCs and CSCs response.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Simona Sabbatini
- Department of Material, Environmental Sciences and Urban Planning, Università Politecnica Delle Marche, 60131 Ancona, Italy;
| | - Chiara Pro
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Giulia Orilisi
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Riccardo Monterubbianesi
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland;
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, SISSI Beamline, 34149 Basovizza, Italy;
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| |
Collapse
|
19
|
Martin CE, Nguyen A, Kang MK, Kim RH, Park NH, Shin KH. DYRK1A is required for maintenance of cancer stemness, contributing to tumorigenic potential in oral/oropharyngeal squamous cell carcinoma. Exp Cell Res 2021; 405:112656. [PMID: 34033760 DOI: 10.1016/j.yexcr.2021.112656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023]
Abstract
DYRK1A, one of the dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), plays an important role in various biological processes by regulating downstream targets via kinase-dependent and independent mechanisms. Here, we report a novel role of DYRK1A in maintaining tumor growth and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC) cells. Deletion of DYRK1A from OSCC cells abrogated their in vivo tumorigenicity and self-renewal capacity, the key features of cancer stem-like cells (CSCs; also referred to as tumor-initiating cells). The DYRK1A deletion also induced the suppression of CSC populations and properties, such as migration ability and chemoresistance. Conversely, ectopic expression of DYRK1A in OSCC cells augmented their CSC phenotype. Among five DYRK members (DYRK1A, 1B, 2, 3, and 4), DYRK1A is the most dominantly expressed kinase, and its expression is upregulated in OSCC compared to normal oral epithelial cells. More importantly, DYRK1A was highly enriched in various CSC-enriched OSCC populations compared to their corresponding non-CSC populations, indicating its pivotal role in cancer progression and stemness. Further, our study revealed that fibroblast growth factor 2 (FGF2) is a key regulator in the DYRK1A-mediated CSC regulation. Functional studies demonstrated that the loss of DYRK1A inhibits CSC phenotype via reduction of FGF2. Overexpression of DYRK1A promotes CSC phenotype via upregulation of FGF2. Our study delineates a novel mechanism of cancer stemness regulation by DYRK1A-FGF2 axis in OSCC. Thus, inhibition of DYRK1A would lead to a potential novel therapeutic option for targeting CSCs in OSCC.
Collapse
Affiliation(s)
- Charlotte Ellen Martin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Notarstefano V, Sabbatini S, Pro C, Belloni A, Orilisi G, Rubini C, Byrne HJ, Vaccari L, Giorgini E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: new evidence of acquired cisplatin chemoresistance. Analyst 2021; 145:8038-8049. [PMID: 33063801 DOI: 10.1039/d0an01623c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral Squamous Cells Carcinoma (OSCC) is characterised by the risk of recurrence and the onset of a refractoriness response to chemotherapy drugs. These phenomena have been recently related to a subpopulation of Cancer Stem Cells (CSCs), which have either an innate or acquired drug resistance, triggered by chemotherapy treatments. In this light, to precisely target chemotherapy regimens, it is essential to improve knowledge on CSCs, with a particular focus on their molecular features. In this work, a subpopulation of CSCs, isolated by tumour sphere formation from primary OSCC cells, were treated with cisplatin for 16, 24 and 48 hours and analysed by infrared absorption and Raman microspectroscopies. CSC spectral data were compared with those obtained in previous work, for primary OSCC cells treated under the same conditions. Routine viability/apoptosis cell-based assays evidenced in CSCs and primary OSCCs, a similar degree of sensitivity to the drug at 24 hours, while a reversion of the conventional monotonic time response exhibited by OSCCs was shown by CSCs at 48 hours. This peculiar time response was also supported by the analysis of IR and Raman data, which pinpointed alterations in the lipid composition and DNA conformation in CSCs. The results obtained suggest that CSCs, although sharing with OSCC cells a similar sensitivity to cisplatin, display the onset of a mechanism of chemoresistance and enrichment of resistant CSCs as a result of drug treatment, shedding new light on the severe issue of refractoriness of some patients to chemotherapy conventionally used for OSCC.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
22
|
Kulkarni S, Solomon M, Chandrashekar C, Shetty N, Carnelio S. Spalt-like transcription factor 4 expression in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical appraisal. J Carcinog 2020; 19:12. [PMID: 33679242 PMCID: PMC7921777 DOI: 10.4103/jcar.jcar_13_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND: Spalt-like transcription factor 4 (SALL4) is a stem cell marker that plays a critical role in maintaining the pluripotency and self-renewal of embryonic and hematopoietic stem cells. Only a few studies have been done to apprehend the expression of SALL4 in the potentially malignant oral lesion (leukoplakia with dysplasia) and oral squamous cell carcinoma (OSCC). AIM: The aim of this study is to evaluate the expression of SALL4 in leukoplakia with dysplasia and OSCC and to correlate the expression of the marker (SALL4) with the various clinicopathological parameters and patient outcome. MATERIALS AND METHODS: Immunohistochemistry for SALL4 protein was performed on 140 cases: those histopathologically confirmed cases of leukoplakia with dysplasia (n = 30) and OSCC (n = 110). Ten cases of nonepithelial neoplasm (fibroepithelial hyperplasia and excised tissue surrounding impacted third molars) were taken as control. Statistical analyses were applied to evaluate correlations between SALL4 overexpression and clinicopathological features of leukoplakia and OSCC. Survival rates were analyzed using Kaplan–Meier method. RESULTS: SALL4 positivity was observed to be higher (P = 0.001) in the tumor cells of OSCC with Immuno Reactive Score (IRS) ranging from 0 to 9. Poorly differentiated squamous cell carcinoma (SCC) had paramount higher expression with a median IRS of 6. Similar IRS and above (IRS, 6–9) was observed in Stage I (five cases), which recurred and well-differentiated cases with metastasis (four cases) while in leukoplakia with dysplasia the SALL4 expression was weak with a range of 2–4. CONCLUSIONS: SALL4 being one of the cancer stem cell molecules plays an important role in the progression of oral cancer, which was evident in this study. This could also account for aggressive clinical behavior. Follow-up of these patients would relate this molecule could be responsible for cancer relapse. Patients diagnosed to have oral epithelial dysplasia had a low expression of SALL4, are under follow-up, although seven cases did transform to SCC. Thus, we conclude, SALL4 may be of prognostic relevance, but in oral epithelial dysplasia, it requires further investigations.
Collapse
Affiliation(s)
- Spoorti Kulkarni
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Monica Solomon
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chetana Chandrashekar
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nisha Shetty
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sunitha Carnelio
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
23
|
Synergic effect of OP449 and FTY720 on oral squamous cell carcinoma. Eur J Pharmacol 2020; 882:173268. [DOI: 10.1016/j.ejphar.2020.173268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
|
24
|
Barlak N, Capik O, Sanli F, Karatas OF. The roles of microRNAs in the stemness of oral cancer cells. Oral Oncol 2020; 109:104950. [PMID: 32828020 DOI: 10.1016/j.oraloncology.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
Oral cancer (OC), which is the most common form of head and neck cancers, has one of the lowest (~50%) overall 5-year survival rates. The main reasons for this high mortality rate are diagnosis of OC in advanced stages in most patients and spread to distant organs via lymph node metastasis. Many studies have shown that a small population of cells within the tumor plays vital roles in the initiation, progression, and metastasis of the tumor, resistance to chemotherapeutic agents, and recurrence. These cells, identified as cancer stem cells (CSCs), are the main reasons for the failure of current treatment modalities. Deregulated expressions of microRNAs are closely related to tumor prognosis, metastasis and drug resistance. In addition, microRNAs play important roles in regulating the functions of CSCs. Until now, the roles of microRNAs in the acquisition and maintenance of OC stemness have not been elucidated in detail yet. Here in this review, we summarized significant findings and the latest literature to better understand the involvement of CSCs in association with dysregulated microRNAs in oral carcinogenesis. Possible roles of these microRNAs in acquisition and maintenance of CSCs features during OC pathogenesis were summarized.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
25
|
Kumbar VM, Muddapur UM, Bhat KG, Shwetha H.R., Kugaji MS, Peram MR. Indirect Immunofluorescence and Tumorspheres Enrichment Technique for Identifying Cancer Stem Cell Markers in Cancer Cell Lines From Primary Oral Cancer Tissues: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820941379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aim: The cancer stem cells (CSCs) are known to be responsible for drug resistance and cancer relapse in the treatment of cancer. Identification and isolation of CSCs and study of their properties will play a crucial role in developing an effective drug against these targets. The aim of the study was to isolate CSCs from primary cancer by the tumorspheres enrichment method, to confirm by indirect immunofluorescence and gene expression of stem cell markers by using real-time polymerase chain reaction (RT-PCR) technique. Materials and Methods: In this in vitro study, we enriched oral CSCs through tumorsphere formation assay from seven primary cultures of OSCC patients with defined serum media. The expression and localization of the cell surface markers of CD133 and CD44 were tested by indirect immunofluorescence. Gene expression of stem cell markers such as CD44, CD133, Oct4, Sox2, and Nanog were quantified by RT-PCR technique. One-way analysis of variance was applied to analyze gene expression. Results: Tumorsphere formation has been used to isolate the CSCs from the OSCC tissue culture. Both CD133 and CD44 antibody confirmed the presence of CSCs through indirect immunofluorescence. In comparison to parental cell lines, the expression levels of CD133, CD44, Oct4, Sox2, and Nanog stem cell were significantly higher in CSC-enriched subpopulations. Conclusions: The cost-effective spheroid enrichment and the indirect immunofluorescence methods are useful for the isolation of CSCs from the primary tumor.
Collapse
Affiliation(s)
- Vijay M. Kumbar
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
- Department of Biotechnology, KLE Technological University (Formerly Known as B V Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubballi, Karnataka, India
| | - Uday M. Muddapur
- Department of Biotechnology, KLE Technological University (Formerly Known as B V Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubballi, Karnataka, India
| | - Kishore G. Bhat
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
| | - Shwetha H.R.
- Department of Oral Pathology, Maratha Mandal’s N G Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Manohar S. Kugaji
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
- Department of Biotechnology, KLE Technological University (Formerly Known as B V Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubballi, Karnataka, India
| | - Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
- Department of Pharmaceutics, Maratha Mandal’s College of Pharmacy, Belagavi, Karnataka, India
| |
Collapse
|
26
|
Proinflammatory cytokine TNFα promotes HPV-associated oral carcinogenesis by increasing cancer stemness. Int J Oral Sci 2020; 12:3. [PMID: 31911577 PMCID: PMC6946657 DOI: 10.1038/s41368-019-0069-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) are involved in the development of several human cancers, including oropharyngeal squamous cell carcinomas. However, many studies have demonstrated that HPV alone is not sufficient for the oncogenic transformation of normal human epithelial cells, indicating that additional cofactors are required for the oncogenic conversion of HPV-infected cells. Inasmuch as chronic inflammation is also closely associated with carcinogenesis, we investigated the effect of chronic exposure to tumor necrosis factor α (TNFα), the major proinflammatory cytokine, on oncogenesis in two immortalized oral keratinocyte cell lines, namely, HPV16-immortalized and human telomerase reverse transcriptase (hTERT)-immortalized cells. TNFα treatment led to the acquisition of malignant growth properties in HPV16-immortalized cells, such as (1) calcium resistance, (2) anchorage independence, and (3) increased cell proliferation in vivo. Moreover, TNFα increased the cancer stem cell-like population and stemness phenotype in HPV16-immortalized cells. However, such transforming effects were not observed in hTERT-immortalized cells, suggesting an HPV-specific role in TNFα-promoted oncogenesis. We also generated hTERT-immortalized cells that express HPV16 E6 and E7. Chronic TNFα exposure successfully induced the malignant growth and stemness phenotype in the E6-expressing cells but not in the control and E7-expressing cells. We further demonstrated that HPV16 E6 played a key role in TNFα-induced cancer stemness via suppression of the stemness-inhibiting microRNAs miR-203 and miR-200c. Overexpression of miR-203 and miR-200c suppressed cancer stemness in TNFα-treated HPV16-immortalized cells. Overall, our study suggests that chronic inflammation promotes cancer stemness in HPV-infected cells, thereby promoting HPV-associated oral carcinogenesis.
Collapse
|
27
|
Lee SH, Kieu C, Martin CE, Han J, Chen W, Kim JS, Kang MK, Kim RH, Park NH, Kim Y, Shin KH. NFATc3 plays an oncogenic role in oral/oropharyngeal squamous cell carcinomas by promoting cancer stemness via expression of OCT4. Oncotarget 2019; 10:2306-2319. [PMID: 31040921 PMCID: PMC6481346 DOI: 10.18632/oncotarget.26774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor of activated T cells (NFATc1-c4), a family of transcription factors, is involved in many biological processes by regulating various downstream target genes. However, their role in cancer progression remains controversial. We here report that NFATc3 is the dominant isoform of NFAT in human oral epithelial cells, and its expression was increased in a stepwise manner during the progression of oral/oropharyngeal squamous cell carcinoma (OSCC). More importantly, NFATc3 was highly enriched in self-renewing cancer stem-like cells (CSCs) of OSCC. Increased expression of NFATc3 was required for the maintenance of CSC self-renewal, as NFATc3 inhibition suppressed tumor sphere formation in OSCC cells. Conversely, ectopic NFATc3 expression in non-tumorigenic immortalized oral epithelial cells resulted in the acquisition of self-renewal and increase in CSC phenotype, such as enhanced ALDH1HIGH cell population, mobility and drug resistance, indicating the functional role of NFATc3 in the maintenance of CSC phenotype. NFATc3 expression also converted the non-tumorigenic oral epithelial cells to malignant phenotypes. Mechanistic investigations further reveal that NFATc3 binds to the promoter of OCT4, a stemness transcription factor, for its activation, thereby promoting CSC phenotype. Moreover, suppression of OCT4 abrogated CSC phenotype in the cell with ectopic NFATc3 overexpression and OSCC, and ectopic OCT4 expression sufficiently induced CSC phenotype. Our study indicates that NFATc3 plays an important role in the maintenance of cancer stemness and OSCC progression via novel NFATc3-OCT4 axis, suggesting that this axis may be a potential therapeutic target for OSCC CSCs.
Collapse
Affiliation(s)
- Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Calvin Kieu
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Charlotte Ellen Martin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Jiho Han
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Jin Seok Kim
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Yong Kim
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA.,UCLA Broad Stem Cell Research Center, Box 957357, Los Angeles 90095, CA, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA
| |
Collapse
|