1
|
Pankhurst TE, Montgomerie I, Marshall A, Draper SL, Bilbrough T, Button KR, Palmer OR, Hermans IF, Painter GF, Connor LM, Compton BJ. A Glycolipid-Peptide-Hapten Tricomponent Conjugate Vaccine Generates Durable Antihapten Antibody Responses in Mice. ACS Chem Biol 2024; 19:1366-1375. [PMID: 38829263 DOI: 10.1021/acschembio.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Eliciting an antihapten antibody response to vaccination typically requires the use of constructs where multiple copies of the hapten are covalently attached to a larger carrier molecule. The carrier is required to elicit T cell help via presentation of peptide epitopes on major histocompatibility complex (MHC) class II molecules; as such, attachment to full-sized proteins, alone or in a complex, is generally used to account for the significant MHC diversity in humans. While such carrier-based vaccines have proven extremely successful, particularly in protecting against bacterial diseases, they can be challenging to manufacture, and repeated use can be compromised by pre-existing immunity against the carrier. One approach to reducing these complications is to recruit help from type I natural killer T (NKT) cells, which exhibit limited diversity in their antigen receptors and respond to glycolipid antigens presented by the highly conserved presenting molecule CD1d. Synthetic vaccines for universal use can, therefore, be prepared by conjugating haptens to an NKT cell agonist such as α-galactosylceramide (αGalCer, KRN7000). An additional advantage is that the quality of NKT cell help is sufficient to overcome the need for an extra immune adjuvant. However, while initial studies with αGalCer-hapten conjugate vaccines report strong and rapid antihapten antibody responses, they can fail to generate lasting memory. Here, we show that antibody responses to the hapten 4-hydoxy-3-nitrophenyl acetyl (NP) can be improved through additional attachment of a fusion peptide containing a promiscuous helper T cell epitope (Pan DR epitope, PADRE) that binds diverse MHC class II molecules. Such αGalCer-hapten-peptide tricomponent vaccines generate strong and sustained anti-NP antibody titers with increased hapten affinity compared to vaccines without the helper epitope. The tricomponent vaccine platform is therefore suitable for further exploration in the pursuit of efficacious antihapten immunotherapies.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Tim Bilbrough
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| |
Collapse
|
2
|
Terabe M, Kumar V. Preface: NKT Cells for Tumor Immunotherapy. Crit Rev Oncog 2024; 29:ix-x. [PMID: 38421709 DOI: 10.1615/critrevoncog.2023050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Masaki Terabe
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|