1
|
Ezz Eldin RR, Saleh MA, Alwarsh SA, Rushdi A, Althoqapy AA, El Saeed HS, Abo Elmaaty A. Design and Synthesis of Novel 5-((3-(Trifluoromethyl)piperidin-1-yl)sulfonyl)indoline-2,3-dione Derivatives as Promising Antiviral Agents: In Vitro, In Silico, and Structure-Activity Relationship Studies. Pharmaceuticals (Basel) 2023; 16:1247. [PMID: 37765055 PMCID: PMC10534365 DOI: 10.3390/ph16091247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, a series of new isatin derivatives was designed and synthesized (1-9) as broad-spectrum antiviral agents. Consequently, the antiviral activities of the synthesized compounds (1-9) were pursued against three viruses, namely influenza virus (H1N1), herpes simplex virus 1 (HSV-1), and coxsackievirus B3 (COX-B3). In particular, compounds 9, 5, and 4 displayed the highest antiviral activity against H1N1, HSV-1, and COX-B3 with IC50 values of 0.0027, 0.0022, and 0.0092 µM, respectively. Compound 7 was the safest, with a CC50 value of 315,578.68 µM. Moreover, a quantitative PCR (real-time PCR) assay was carried out for the most relevant compounds. The selected compounds exhibited a decrease in viral gene expression. Additionally, the conducted in silico studies emphasized the binding affinities of the synthesized compounds and their reliable pharmacokinetic properties as well. Finally, a structure-antiviral activity relationship study was conducted to anticipate the antiviral activity change upon future structural modification.
Collapse
Affiliation(s)
- Rogy R. Ezz Eldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (M.A.S.); (H.S.E.S.)
| | - Sefat A. Alwarsh
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia;
| | - Areej Rushdi
- Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (A.R.); (A.A.A.)
| | - Azza Ali Althoqapy
- Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (A.R.); (A.A.A.)
| | - Hoda S. El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (M.A.S.); (H.S.E.S.)
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
2
|
Rodríguez CS, Charó N, Tatti S, Gómez RM, D’Atri LP, Schattner M. Regulation of megakaryo/thrombopoiesis by endosomal toll-like receptor 7 and 8 activation of CD34 + cells in a viral infection model. Res Pract Thromb Haemost 2023; 7:100184. [PMID: 37538496 PMCID: PMC10394566 DOI: 10.1016/j.rpth.2023.100184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 08/05/2023] Open
Abstract
Background CD34+ cells, megakaryocytes (MKs), and platelets express toll-like receptors (TLRs) that enable these cells to amplify the host innate immune response. However, the role of TLR7/TLR8 activation in megakaryopoiesis has not yet been investigated. Objectives We evaluated the effect of coxsackievirus B3 (CVB3) and synthetic TLR7/TLR8 agonists on the development of human MKs and production of platelets. Methods CD34+ cells from human umbilical cord were inoculated with CVB3 or stimulated with synthetic TLR7/TLR8 agonists and then cultured in the presence of thrombopoietin. Results CD34+ cells, MK progenitor cells, and mature MKs expressed TLR7 and TLR8, and exposure to CVB3 resulted in productive infection, as determined by the presence of viral infectious particles in culture supernatants. Cell expansion, differentiation into MKs, MK maturation, and platelet biogenesis were significantly reduced in CD34+-infected cultures. The reduction in MK growth was not due to an alteration in cellular proliferation but was accompanied by an increase in cellular apoptosis and pyroptosis. Impairment of MK generation and maturation of viable cells were also associated with decreased expression of transcription factors involved in these processes. These effects were completely abrogated by TLR7 but not TLR8 antagonists and mimicked by TLR7 but not TLR8 agonists. CVB3 infection of CD34+ cells increased the immunophenotype of MKs characterized as CD148+/CD48+ or CD41+/CD53+ cells. Conclusion These data suggest a novel role of TLR7 in megakaryo/thrombopoiesis that may contribute to a better understanding of the molecular basis underlying thrombocytopenia and the immunologic role of MKs in viral infection processes.
Collapse
Affiliation(s)
- Camila Sofía Rodríguez
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Nancy Charó
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | | | - Ricardo Martín Gómez
- Laboratory of Animal Viruses, Institute of Biotechnology and Molecular Biology, UNLP-CONICET, La Plata, Argentina
| | - Lina Paola D’Atri
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| |
Collapse
|
3
|
Thach R, Gitto L. Neonatal sepsis due to Coxsackievirus B3 complicated by liver failure and pulmonary hemorrhage. CASE REPORTS IN PERINATAL MEDICINE 2022. [DOI: 10.1515/crpm-2021-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Coxsackievirus B3 (CVB3) is a single-stranded RNA included in the “Human Enterovirus B” category associated with multiple, even severe, health issues in humans. Newborns are at risk of life-threatening conditions due to enteroviral infections. In newborns, the infection can be transmitted vertically, intrapartum or postpartum, and potentially through breast milk. Neonatal sepsis may result in severe complications, such as liver failure and pulmonary hemorrhage, with subsequent death.
Case presentation
A male newborn was admitted to the emergency department with fever, generalized hypotonia, hypo-reactivity to external stimuli, multiple episodes of apnea and desaturation, and metabolic acidosis. Laboratory studies revealed disseminated intravascular coagulation, and evidence of progressive multiorgan failure. Polymerase chain reaction performed on specimens collected at the time of admission returned positive for Enterovirus, specifically Coxsackievirus B3 VP1 gene. The patient eventually succumbed after several days due to severe sepsis, despite aggressive treatment with immunoglobulins and Pleconaril. An autopsy revealed hemorrhage in the lung, liver, heart, and gastric mucosa.
Conclusions
Enteroviral neonatal infections should be included in the differential diagnosis of a newborn presenting with fever, failure to thrive, and hyporeactivity, especially if symptoms arise during the classic CVB3 season. Maternal medical history should be reviewed for any possible febrile symptoms associated with a recent enterovirus infection. Aggressive treatment with immunoglobulins and, if available, Pleconaril could effectively treat the infection.
Collapse
Affiliation(s)
- Rasmey Thach
- Department of Medicine , William Beaumont Army Medical Center , El paso , TX , USA
| | - Lorenzo Gitto
- Department of Pathology , State University of New York Upstate Medical University , Syracuse , USA
| |
Collapse
|
4
|
Abstract
Platelets play an essential role in maintaining vascular integrity after injury. In addition, platelets contribute to the immune response to pathogens. For instance, they express receptors that mediate binding of viruses, and toll-like receptors that activate the cell in response to pathogen-associated molecular patterns. Platelets can be beneficial and/or detrimental during viral infections. They reduce blood-borne viruses by engulfing the free virus and presenting the virus to neutrophils. However, platelets can also enhance inflammation and tissue injury during viral infections. Here, we discuss the roles of platelets in viral infection.
Collapse
Affiliation(s)
- Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Raadsen M, Du Toit J, Langerak T, van Bussel B, van Gorp E, Goeijenbier M. Thrombocytopenia in Virus Infections. J Clin Med 2021; 10:jcm10040877. [PMID: 33672766 PMCID: PMC7924611 DOI: 10.3390/jcm10040877] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Thrombocytopenia, which signifies a low platelet count usually below 150 × 109/L, is a common finding following or during many viral infections. In clinical medicine, mild thrombocytopenia, combined with lymphopenia in a patient with signs and symptoms of an infectious disease, raises the suspicion of a viral infection. This phenomenon is classically attributed to platelet consumption due to inflammation-induced coagulation, sequestration from the circulation by phagocytosis and hypersplenism, and impaired platelet production due to defective megakaryopoiesis or cytokine-induced myelosuppression. All these mechanisms, while plausible and supported by substantial evidence, regard platelets as passive bystanders during viral infection. However, platelets are increasingly recognized as active players in the (antiviral) immune response and have been shown to interact with cells of the innate and adaptive immune system as well as directly with viruses. These findings can be of interest both for understanding the pathogenesis of viral infectious diseases and predicting outcome. In this review, we will summarize and discuss the literature currently available on various mechanisms within the relationship between thrombocytopenia and virus infections.
Collapse
Affiliation(s)
- Matthijs Raadsen
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Justin Du Toit
- Department of Haematology, Wits University Donald Gordon Medical Centre Johannesburg, Johannesburg 2041, South Africa;
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Bas van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center Plus, 6229 HX Maastricht, The Netherlands;
- Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|