1
|
Cai B, Cai T, Feng Z, Zhu H. The possible anti-tumor actions and mechanisms of active metabolites from Cortex Fraxini. Front Pharmacol 2024; 15:1404172. [PMID: 39346560 PMCID: PMC11427270 DOI: 10.3389/fphar.2024.1404172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Cortex Fraxini is a traditional Chinese herb that is widely available, inexpensive, and has low toxicity. Modern pharmacological studies have demonstrated that the active metabolites in Cortex Fraxini, including esculin, esculetin, and fraxetin, exert anti-tumor activities by regulating genes and proteins involved in cancer cell proliferation, apoptosis, invasion, and migration. Additionally, these metabolites play a pivotal role in the regulation of several tumor-associated signaling pathways, including the PI3K/Akt, MAPK/ERK, JAK/STAT3, and Wnt/β-catenin pathways. Due to their pro-apoptotic and anti-proliferative properties in vitro and in vivo, Cortex Fraxini and its active metabolites may be considered as potential candidates for the treatment of tumor. The aim of this review is to highlight the anti-tumor biological activities and underlying mechanisms of action of the active metabolites of Cortex Fraxini, with a view to providing a reference for their further development and application in the treatment of tumors.
Collapse
Affiliation(s)
- Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Ting Cai
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, China
| | - Zeyu Feng
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Huanhuan Zhu
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
2
|
Chai Y, Sun X, Zhou Q, Li H, Xi Y. Exploration of the mechanism of fraxetin in treating acute myeloid leukemia based on network pharmacology and experimental verification. Heliyon 2024; 10:e34717. [PMID: 39166080 PMCID: PMC11334658 DOI: 10.1016/j.heliyon.2024.e34717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Objective To explore the pharmacological mechanism of the effect of fraxetin in treating acute myeloid leukemia (AML) by the network pharmacology method combined with experimental validation. Methods The targets of fraxetin were identified through Swisstarget prediction, PhammerMap, and CTDBASE. Disease-related targets of AML were explored using GeneCards and DisGenet databases, and the intersected targets were analyzed in the String website to construct a protein-protein interaction (PPI) network. Subsequently, gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted using the DAVID database. Molecular docking of core proteins with drugs was performed using Auto Dock Vina software. Finally, the effect of fraxetin on AML was evaluated by in vitro experiments. The effect of fraxetin on AML cell proliferation was assessed by CCK8, the effect of fraxetin on AML cell apoptosis was assessed by flow cytometry, and the expression of relevant protein targets was detected by Western blotting to evaluate the anti-AML effect of fraxetin. Results In this study, fraxetin exerts its effect against AML through 101 intersecting genes. The pathway enrichment analysis revealed that the pharmacological effects of fraxetin on AML were related to the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, and the molecular docking results indicated that fraxetin had an excellent binding affinity to both the core target and AMPK. In vitro experiments have demonstrated that fraxetin inhibited the proliferation and induced apoptosis of THP1 and HL60 cells, and the western blotting results indicated that the p-AMPK of the fraxetin intervention group was significantly changed in a dose-dependent manner. Conclusion Fraxetin may modulate the AMPK signal pathway by interactine with the core target, thereby potentially therapeutic effect on AML.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| |
Collapse
|
3
|
Ha NM, Son NT. Health benefits of fraxetin: From chemistry to medicine. Arch Pharm (Weinheim) 2024; 357:e2400092. [PMID: 38501886 DOI: 10.1002/ardp.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Fraxetin is a bioactive molecule present in various natural plants, especially Cortex Fraxini. Evidenced outcomes in phytochemical and biological analyses for this agent are now available in the literature, but an insightful review is yet unknown. The goal of the current research is to offer a panoramic illustration of natural observation, biosynthesis, synthesis, pharmacology, and pharmacokinetics for fraxetin. Esculetin and ferulic acid acted as precursors in the enzymatic biosynthetic route, whereas fraxetin could be easily synthesized from simple phenols. A great deal of interest was obtained in using this molecule for pharmacological targets. Herein, its pharmacological value included anticancer, antioxidative, anti-inflammatory, antidiabetic, antiobesity, and antimicrobial activities, as well as the protection of the liver, neurons, heart, bone, lung, kidney, and others. Anticancer activity may involve the inhibition of proliferation, invasion, and migration, together with apoptotic induction. Health benefits from this molecule were deduced from its ability to suppress cytokines and protect the immune syndrome. Various signaling pathways, such as Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt), nuclear factor kappa B (NF-κB)/NLRP3, Akt/AMPK, have been proposed for in vitro and in vivo mechanisms of action. Fraxetin is highly distributed to rat plasma and several organs. However, more pharmacokinetic studies to improve its bioavailability are needed since its solubility in water is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
4
|
Weng M, Deng Z, Huang S, Lin X, Xu N, Sun X, Wu W, Lu J, Wang D. Fraxetin inhibits proliferation and induces apoptosis of bladder cancer through the Akt pathway in vitro and in vivo. J Biochem Mol Toxicol 2024; 38:e23556. [PMID: 37867445 DOI: 10.1002/jbt.23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Fraxetin, a natural compound extracted from the Chinese herb Cortex Fraxini, is reported to boast extensive antitumor properties in various cancers. However, whether fraxetin exhibited an anticancer effect on bladder cancer remains unknown. In this study, cell counting kit-8 was utilized to detect cell viability. Flow cytometry analysis was performed for cell apoptosis analysis. Western blot analysis and real-time PCR were used to ascertain gene expression analysis. A mouse bladder cancer xenograft model was established and subjected to fraxetin treatment. Fraxetin reduced the viability of bladder cancer cells, induced apoptosis in vitro, and inhibited the growth of bladder cancer in vivo. Fraxetin inhibited the Akt pathway in J82 cells. In conclusion, the growth inhibitory properties of fraxetin against bladder cancer may be mediated via an Akt inhibitory effect and cell apoptosis promotion.
Collapse
Affiliation(s)
- Mingfang Weng
- Department of Urology, 900TH Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Zhen Deng
- Department of Urology, 900TH Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Shuijing Huang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaowen Lin
- Department of Vascular Surgery, Fujian Provincial People's Hospital, Fuzhou, China
| | - Na Xu
- Department of Urology, 900TH Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Xinghui Sun
- Department of Urology, 900TH Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Weizhen Wu
- Department of Urology, 900TH Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900TH Hospital of Joint Logistics Support Force), Xiamen University, Fuzhou, China
| | - Dong Wang
- Department of Urology, 900TH Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900TH Hospital of Joint Logistics Support Force), Xiamen University, Fuzhou, China
| |
Collapse
|
5
|
Mo Y, Adu-Amankwaah J, Qin W, Gao T, Hou X, Fan M, Liao X, Jia L, Zhao J, Yuan J, Tan R. Unlocking the predictive potential of long non-coding RNAs: a machine learning approach for precise cancer patient prognosis. Ann Med 2023; 55:2279748. [PMID: 37983519 DOI: 10.1080/07853890.2023.2279748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
The intricate web of cancer biology is governed by the active participation of long non-coding RNAs (lncRNAs), playing crucial roles in cancer cells' proliferation, migration, and drug resistance. Pioneering research driven by machine learning algorithms has unveiled the profound ability of specific combinations of lncRNAs to predict the prognosis of cancer patients. These findings highlight the transformative potential of lncRNAs as powerful therapeutic targets and prognostic markers. In this comprehensive review, we meticulously examined the landscape of lncRNAs in predicting the prognosis of the top five cancers and other malignancies, aiming to provide a compelling reference for future research endeavours. Leveraging the power of machine learning techniques, we explored the predictive capabilities of diverse lncRNA combinations, revealing their unprecedented potential to accurately determine patient outcomes.
Collapse
Affiliation(s)
- Yixuan Mo
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Wenjie Qin
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Tan Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xiaoqing Hou
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Mengying Fan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xuemei Liao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Liwei Jia
- Department of Pathology, UT Southwestern Medical Center, Dallas, UT, USA
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Zhai X, Zhu J, Li J, Wang Z, Zhang G, Nie Y. Fraxetin alleviates BLM-induced idiopathic pulmonary fibrosis by inhibiting NCOA4-mediated epithelial cell ferroptosis. Inflamm Res 2023; 72:1999-2012. [PMID: 37798541 DOI: 10.1007/s00011-023-01800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a debilitating lung condition with few available treatments. The early driver of wound repair that contributes to IPF has been extensively identified as repetitive alveolar epithelial damage. According to recent reports, IPF is linked to ferroptosis, a unique type of cell death characterized by a fatal buildup of iron and lipid peroxidation. OBJECTIVE AND METHOD There is little information on epithelial cells that induce pulmonary fibrosis by going through ferroptosis. In this study, we used bleomycin (BLM) to examine the impact of ferroptosis on IPF in mouse lung epithelial cells (MLE-12). RESULTS We discovered that BLM increases ferroptosis in MLE-12. Additionally, we found that NCOA4 is overexpressed and plays a key role in the ferroptosis of epithelial cells throughout the IPF process. Using Molecular docking, we found that Fraxetin, a natural component extracted from Fraxinus rhynchophylla, formed a stable binding to NCOA4. In vitro investigations showed that Fraxetin administration greatly decreased ferroptosis and NCOA4 expression, which in turn lowered the release of inflammatory cytokines. CONCLUSION Fraxetin treatment significantly alleviated BLM-induced lung inflammation and fibrosis. Our findings imply that fraxetin possesses inhibitory roles in ferroptosis and can be a potential drug against IPF.
Collapse
Affiliation(s)
- Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhixu Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gufang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Fraxetin Interacts Additively with Cisplatin and Mitoxantrone, Antagonistically with Docetaxel in Various Human Melanoma Cell Lines-An Isobolographic Analysis. Int J Mol Sci 2022; 24:ijms24010212. [PMID: 36613654 PMCID: PMC9820609 DOI: 10.3390/ijms24010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Malignant melanoma is a skin cancer characterized by rapid development, poor prognosis and high mortality. Due to the frequent drug resistance and/or early metastases in melanoma, new therapeutic methods are urgently needed. The study aimed at assessing the cytotoxic and antiproliferative effects of scoparone and fraxetin in vitro, when used alone and in combination with three cytostatics: cisplatin, mitoxantrone, and docetaxel in four human melanoma cell lines. Our experiments showed that scoparone in the concentration range tested up to 200 µM had no significant effect on the viability of human malignant melanoma (therefore, it was not possible to evaluate it in combination with other cytostatics), while fraxetin inhibited cell proliferation with IC50 doses in the range of 32.42-73.16 µM, depending on the cell line. Isobolographic analysis allowed for the assessment of the interactions between the studied compounds. Importantly, fraxetin was not cytotoxic to normal keratinocytes (HaCaT) and melanocytes (HEMa-LP), although it slightly inhibited their viability at high concentrations. The combination of fraxetin with cisplatin and mitoxantrone showed the additive interaction, which seems to be a promising direction in melanoma therapy. Unfortunately, the combination of fraxetin with docetaxel may not be beneficial due to the antagonistic antiproliferative effect of both drugs used in the mixture.
Collapse
|
8
|
Tian XM, Xiang B, Yu YH, Li Q, Zhang ZX, Zhanghuang C, Jin LM, Wang JK, Mi T, Chen ML, Liu F, Wei GH. A novel cuproptosis-related subtypes and gene signature associates with immunophenotype and predicts prognosis accurately in neuroblastoma. Front Immunol 2022; 13:999849. [PMID: 36211401 PMCID: PMC9540510 DOI: 10.3389/fimmu.2022.999849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background Neuroblastoma (NB) is the most frequent solid tumor in pediatrics, which accounts for roughly 15% of cancer-related mortality in children. NB exhibited genetic, morphologic, and clinical heterogeneity, which limited the efficacy of available therapeutic approaches. Recently, a new term 'cuproptosis' has been used to denote a unique biological process triggered by the action of copper. In this instance, selectively inducing copper death is likely to successfully overcome the limitations of conventional anticancer drugs. However, there is still a gap regarding the role of cuproptosis in cancer, especially in pediatric neuroblastoma. Methods We characterized the specific expression of cuproptosis-related genes (CRGs) in NB samples based on publicly available mRNA expression profile data. Consensus clustering and Lasso-Cox regression analysis were applied for CRGs in three independent cohorts. ESTIMATE and Xcell algorithm was utilized to visualize TME score and immune cell subpopulations' relative abundances. Tumor Immune Dysfunction and Exclusion (TIDE) score was used to predict tumor response to immune checkpoint inhibitors. To decipher the underlying mechanism, GSVA was applied to explore enriched pathways associated with cuproptosis signature and Connectivity map (CMap) analysis for drug exploration. Finally, qPCR verified the expression levels of risk-genes in NB cell lines. In addition, PDHA1 was screened and further validated by immunofluorescence in human clinical samples and loss-of-function assays. Results We initially classified NB patients according to CRGs and identified two cuproptosis-related subtypes that were associated with prognosis and immunophenotype. After this, a cuproptosis-related prognostic model was constructed and validated by LASSO regression in three independent cohorts. This model can accurately predict prognosis, immune infiltration, and immunotherapy responses. These genes also showed differential expression in various characteristic groups of all three datasets and NB cell lines. Loss-of-function experiments indicated that PDHA1 silencing significantly suppressed the proliferation, migration, and invasion, in turn, promoted cell cycle arrest at the S phase and apoptosis of NB cells. Conclusions Taken together, this study may shed light on new research areas for NB patients from the cuproptosis perspective.
Collapse
Affiliation(s)
- Xiao-Mao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi-Hang Yu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Qi Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Zhao-Xia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chenghao Zhanghuang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Li-Ming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin-Kui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Mei-Lin Chen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Feng Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Guang-Hui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
9
|
Lee M, Yang C, Park S, Song G, Lim W. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. J Cell Biochem 2021; 123:469-480. [PMID: 34816480 DOI: 10.1002/jcb.30187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023]
Abstract
Fraxetin is a natural compound extracted from Fraxinus spp. and has various functions such as antibacterial, antioxidant, neuroprotective, and antifibrotic effects. Although studies have reported its anticancer properties in lung and breast cancer, little is known about colon cancer, the most frequent type of cancer. Thus, we used two colon cancer cell lines, HT29 and HCT116 cells, to investigate whether fraxetin could inhibit the capabilities acquired during tumor development. In this study, fraxetin suppressed cell viability and induced apoptotic cell death in HT29 and HCT116 cells. Furthermore, fraxetin regulated the expression of proteins involved in apoptosis in HT29 and HCT116 cells. Additionally, fraxetin induced reactive oxygen species levels and calcium influx with loss of mitochondrial membrane potential (ΔΨm) and endoplasmic reticulum stress. Moreover, fraxetin induced G2/M arrest and modulated the intracellular signaling pathway, including AKT, ERK1/2, JNK, and P38. Nevertheless, we found no cause-effect correlation between the antiproliferative action of fraxetin and modulation of the phosphorylation state of signaling proteins. Fraxetin-induced inhibitory effect on colon cancer cell viability was synergistic with 5-fluorouracil (5-FU) or irinotecan even in 5-FU resistant-HCT116 cells. Collectively, our results suggest that fraxetin can be effectively used as a therapeutic agent for targeting colon cancer, although it is necessary to further elucidate the relationship between the hallmark capabilities that fraxetin inhibits and the intracellular regulatory mechanism.
Collapse
Affiliation(s)
- Minkyeong Lee
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| | - Changwon Yang
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Yao H, Li X, Pan X, Xu J, Zhao S, Su Z, Qiu S. Fraxetin exerts anticancer effect in glioma by suppressing MiR-21-3p. Drug Dev Res 2021; 83:501-511. [PMID: 34523750 DOI: 10.1002/ddr.21881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/21/2023]
Abstract
Fraxetin (FXT) exerts anticancer function in multiple cancers, but its function on glioma was ill-defined. This article expounded the mechanism by which FXT exerts an anticancer effect in glioma. The effect of gradient concentration of FXT on the viability of glioma cell lines was determined by cell counting kit 8. Effects of FXT on proliferation, apoptosis, and cell cycle in glioma cell lines were determined by colony formation assay, flow cytometry, and Hoechst 33342 staining. Expressions of apoptosis-related gene, cycle-related gene, and glioma-related miRNAs after FXT (25 and 50 μmol/L) treatment were determined by quantitative reverse transcription polymerase chain reaction and western blot as needed. After miR-21-3p overexpression, cell viability and apoptosis of glioma cell lines treated with FXT (50 μmol/L) were tested again. Although 1 μmol/L FXT had no significant effect on cell viability, 5, 10, 25, and 50 μmol/L FXT suppressed cell viability in a concentration-dependent manner. FXT inhibited proliferation, promoted apoptosis, and induced cell cycle arrest in G0/G1 phase in glioma cell lines. These effects may be achieved by elevated expressions of Bax and cleaved caspase-3 and diminished expressions of Bcl-2, Bcl-XL, cyclin E1, cyclin D1, and cyclin-dependent kinase-6. FXT attenuated the contents of miR-21-3p and miR-455-3p, and escalated the contents of miR-124-3p and miR-7-5p. The regulation of FXT on cell viability, proliferation and apoptosis was reversed by miR-21-3p overexpression. FXT suppressed the development of glioma cells by downregulating miR-21-3p.
Collapse
Affiliation(s)
- Hanxun Yao
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Xiaobin Li
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Xuyan Pan
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Shufa Zhao
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
11
|
Guo Y, Xiao Y, Guo H, Zhu H, Chen D, Wang J, Deng J, Lan J, Liu X, Zhang Q, Bai Y. The anti-dysenteric drug fraxetin enhances anti-tumor efficacy of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation. Aging (Albany NY) 2021; 13:18545-18563. [PMID: 34320467 PMCID: PMC8351699 DOI: 10.18632/aging.203301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Fraxetin, a natural product isolated and purified from the bark of Fraxinus bungeana A.DC., has anti-inflammatory, analgesic, and anti-dysenteric activities. This study aimed to investigate the anti-tumor effects of fraxetin in pancreatic ductal adenocarcinoma (PDA). The effects of fraxetin on the malignant biological behavior of PDA were evaluated. Besides, the effects of fraxetin on the sensitivity of PCCs to gemcitabine, angiogenesis, the epithelial-mesenchymal transition (EMT), glucose metabolism, reactive oxygen species (ROS), and STAT3 activity were analyzed. By reversing the EMT, fraxetin suppressed proliferation, invasion, and migration, and induced mitochondrial-dependent apoptosis in PCCs. Also, treatment with fraxetin inhibited PDA growth and metastasis in nude mouse models. Furthermore, fraxetin made PCCs more sensitive to the chemotherapy drug gemcitabine. Mechanically, fraxetin treatment suppressed oncogenic KRAS-triggered STAT3 activation in PCCs and PDA tissues. Fraxetin shows significant interactions with STAT3 Src Homology 2 (SH2) domain residues, thereby preventing its homo-dimer formation, which then blocks the activation of downstream signal pathways. The anti-tumor activity of fraxetin in PDA was functionally rescued by a STAT3 activator colivelin. As a result, fraxetin hindered hypoxia-induced angiogenesis by decreasing HIF-1α and VEGFA expression, controlled glucose metabolism by reducing GLUT1 expression, inhibited the EMT by blocking the Slug-E-cadherin axis, and drove ROS-mediated apoptosis by regulating the STAT3-Ref1 axis. In conclusion, fraxetin enhances the anti-tumor activity of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dong Chen
- The Sixth People’s Hospital of Wenzhou City, Wenzhou 325000, China
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Lan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361000, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
- Center for Health Assessment, Wenzhou Medical University, Wenzhou 325000, China
| | - Qiyu Zhang
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
13
|
Fraxetin Inhibits the Proliferation and Metastasis of Glioma Cells by Inactivating JAK2/STAT3 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5540139. [PMID: 33959183 PMCID: PMC8075667 DOI: 10.1155/2021/5540139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
Glioma is the most common brain tumor and is characterized by high mortality rates, high recurrence rates, and short survival time. Migration and invasion are the basic features of gliomas. Thus, inhibition of migration and invasion may be beneficial for the treatment of patients with glioma. Due to its antitumor activity and chemical reactivity, fraxetin has attracted extensive interest and has been proven to be an effective antitumor agent in various cancer types. However, currently, the potential effects of fraxetin on glioma have not been investigated. Here, we demonstrate that fraxetin can inhibit the proliferation, invasion, and migration of glioma and induce apoptosis of glioma cells in vitro and in vivo. Therefore, these findings establish fraxetin as a drug candidate for glioma treatment. Furthermore, fraxetin was able to effectively inhibit the JAK2/STAT3 signaling in glioma. In summary, our results show that fraxetin inhibits proliferation, invasion, and migration of glioma by inhibiting JAK2/STAT3 signaling and inducing apoptosis of glioma cells. The present study provides a solid basis for the development of new glioma therapies.
Collapse
|
14
|
Balaha M, Ahmed N, Geddawy A, Kandeel S. Fraxetin prevented sodium fluoride-induced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities. Int Immunopharmacol 2021; 93:107372. [PMID: 33524802 DOI: 10.1016/j.intimp.2021.107372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 01/24/2023]
Abstract
Chronic pancreatitis is considered a common gastrointestinal disorder, with significant morbidity and mortality. Fluoride is an important agent for the development of our body systems, especially for bone and teeth, however on its excess consumption, it deposits in different body tissues, especially the pancreas, causing its chronic inflammation and destruction. Fraxetin proved to possess versatile activities including; antioxidant, anti-inflammatory, antifibrotic, and anti-apoptotic activities. In the present study, we have evaluated the fraxetin potentiality to prevent fluoride-induced chronic pancreatitis in rats, by evaluating animal body weights and body weight gain rate, serum amylase, and lipase activities, pancreatic oxidative stress markers, cytokines, apoptotic markers, myeloperoxidase, and hydroxyproline levels, and histopathological changes. Nine-weeks-old male Wistar rats drank distilled water containing 500 ppm sodium fluoride (NaF) for 60 days to induce chronic pancreatitis. Oral fraxetin (20, 40, and 80 mg/kg/day) received simultaneously to prevent chronic pancreatitis development. Fraxetin in a dose-dependent manner alleviated chronic pancreatitis induced by NaF, as it restored the decreased body weight and weight gain rate, decreased the elevated serum amylase and lipase activities, pancreatic IL-6, TNF-α, MDA, caspase-3, MPO and hydroxyproline levels, and Bax/Bcl-2 ratio, enhanced pancreatic CAT and SOD activities, and GSH levels, besides it augmented the elevated IL-10 level, with the restoration of normal pancreatic architecture. Therefore, fraxetin could be a promising agent recommended for the prevention of fluoride-induced chronic pancreatitis in endemic areas.
Collapse
Affiliation(s)
- Mohamed Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Tanta University, El-Gish Street, Postal No. 31527, Tanta, Egypt.
| | - Nehad Ahmed
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ayman Geddawy
- Pharmacology Department, Faculty of Medicine, Minia University Postal No. 31527, Minia, Egypt
| | - Samah Kandeel
- Histology Department, Faculty of Medicine, Tanta University, El-Gish Street, Postal No. 31527 Tanta, Egypt
| |
Collapse
|
15
|
Song J, Ham J, Hong T, Song G, Lim W. Fraxetin Suppresses Cell Proliferation and Induces Apoptosis through Mitochondria Dysfunction in Human Hepatocellular Carcinoma Cell Lines Huh7 and Hep3B. Pharmaceutics 2021; 13:pharmaceutics13010112. [PMID: 33477262 PMCID: PMC7830088 DOI: 10.3390/pharmaceutics13010112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Fraxetin is a coumarin scaffold compound extracted from Fraxinus rhynchophylla. It has antioxidant, anti-inflammatory, hepatoprotective, and antifibrotic effects. Furthermore, fraxetin has anticancer effects in breast and lung cancer. We aimed to evaluate whether fraxetin has anticancer activity in hepatocellular carcinoma (HCC) cells and its underlying mechanism. We demonstrated the anticancer effects of fraxetin in the HCC cell lines Huh7 and Hep3B. We confirmed that fraxetin inhibited cell proliferation (42% ± 10% Huh7; 52% ± 7% Hep3B) by arresting the cell cycle and inducing apoptosis in both cell lines. Moreover, fraxetin increased reactive oxygen species production (221% ± 55% Huh7; 460% ± 73% Hep3B), depolarized the mitochondrial membranes (ΔΨm) (345% ± 160% Huh7; 462% ± 140% Hep3B), and disrupted calcium homeostasis in both HCC cell lines. Chelating calcium ions with BAPTA-AM restored proliferation in fraxetin-treated Huh7 cells but not in Hep3B cells. Fraxetin did not affect the phosphorylation of extracellular-signal-regulated kinase 1/2, whereas it decreased JNK and phosphoinositide 3-kinase signaling. Furthermore, fraxetin and mitogen-activated protein kinase pharmacological inhibitors had synergistic antiproliferative effects on HCC cells. Although our study was limited to in vitro data that require validation, we suggest that fraxetin is a potential therapeutic agent against HCC progression.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Taeyeon Hong
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.)
| |
Collapse
|
16
|
Restivo I, Tesoriere L, Frazzitta A, Livrea MA, Attanzio A, Allegra M. Anti-Proliferative Activity of A Hydrophilic Extract of Manna from Fraxinus angustifolia Vahl through Mitochondrial Pathway-Mediated Apoptosis and Cell Cycle Arrest in Human Colon Cancer Cells. Molecules 2020; 25:E5055. [PMID: 33143282 PMCID: PMC7663425 DOI: 10.3390/molecules25215055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Manna is produced from the spontaneous solidification of the sap of some Fraxinus species, and, owing its content in mannitol, is used in medicine as a mild laxative. Manna is also a rich source of characteristic bio-phenols with reducing, antioxidant and anti-inflammatory properties. This study assesses the activity of a hydrophilic extract of manna (HME) on cellular and molecular events in human colon-rectal cancer cells. HME showed a time- and concentration-dependent anti-proliferative activity, measured by MTT assay, in all the cell lines examined, namely Caco-2, HCT-116 and HT-29. The amounts of HME that caused 50% of cell death after a 24 h treatment were 8.51 ± 0.77, 10.73 ± 1.22 and 28.92 ± 1.99 mg manna equivalents/mL, respectively; no toxicity was observed in normally differentiated Caco-2 intestinal cells. Hydroxytyrosol, a component of HME known for its cytotoxic effects on colon cancer cells, was ineffective, at least at the concentration occurring in the extract. Through flow-cytometric techniques and Western blot analysis, we show that HME treatment causes apoptosis, assessed by phosphatidylserine exposure, as well as a loss of mitochondrial membrane potential, an intracellular formation of reactive oxygen species (ROS), increases in the levels of cleaved PARP-1, caspase 3 and Bax, and a decrease in Bcl-2 expression. Moreover, HME interferes with cell cycle progression, with a block at the G1/S transition. In conclusion, the phytocomplex extracted from manna exerts an anti-proliferative activity on human colon cancer cells through the activation of mitochondrial pathway-mediated apoptosis and cell cycle arrest. Our data may suggest that manna could have the potential to exert chemo-preventive effects for the intestine.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (I.R.); (L.T.); (A.F.); (M.A.L.)
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (I.R.); (L.T.); (A.F.); (M.A.L.)
| |
Collapse
|
17
|
Ren S, Xing Y, Wang C, Jiang F, Liu G, Li Z, Jiang T, Zhu Y, Piao D. Fraxetin inhibits the growth of colon adenocarcinoma cells via the Janus kinase 2/signal transducer and activator of transcription 3 signalling pathway. Int J Biochem Cell Biol 2020; 125:105777. [PMID: 32504672 DOI: 10.1016/j.biocel.2020.105777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Fraxetin, extracted from the bark of Fraxinus rhynchophylla, has been shown to exhibit antitumour and anti-inflammatory pharmacological properties. However, the mechanism underlying its anticancer activity towards colon adenocarcinoma (COAD) is not well understood. We aimed to determine the antitumour effect of fraxetin on COAD cell lines and elucidate its biochemical and molecular targets. METHODS The cell lines HCT116 and DLD-1 were used to evaluate the in vitro antitumour efficacy of fraxetin. Cytotoxicity and viability were assessed by CCK-8 and plate colony formation assays. Flow cytometry was used to assess apoptosis and cell cycle progression in fraxetin-treated COAD cells. Western blot, RT-qPCR, molecular docking, immunohistochemical, and immunofluorescence analyses were used to gain insights into cellular and molecular mechanisms. Preclinical curative effects were evaluated in nude mouse xenograft models. RESULTS Fraxetin significantly inhibited COAD cell proliferation in both dose- and time-dependent manners, specifically by inducing S-phase cell cycle arrest and triggering intrinsic apoptosis. Additionally, the level of p-JAK2 was decreased by fraxetin via the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling pathway. Interestingly, in COAD cells, fraxetin directly targeted the Y1007 and Y1008 residues of JAK2 to suppress its auto- or transphosphorylation, leading to decreased activation of its downstream effector STAT3 and blocking its nuclear translocation. Finally, fraxetin exhibited good tumour growth suppression activity and low toxicity. CONCLUSIONS Fraxetin inhibits the proliferation of COAD cells by regulating the JAK2/STAT3 signalling pathway, providing evidence that targeting JAK2 with fraxetin may offer a novel potential auxiliary therapy for COAD treatment.
Collapse
Affiliation(s)
- Shuo Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chengbo Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Fengqi Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Guangyu Liu
- Department of Anorectal Surgery, The Shenzhen Hospital of Southern Medical University, Southern Medical University, Shenzhen, China
| | - Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Tao Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
19
|
Zhang C, Ma K, Li WY. Cinobufagin Suppresses The Characteristics Of Osteosarcoma Cancer Cells By Inhibiting The IL-6-OPN-STAT3 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4075-4090. [PMID: 31824138 PMCID: PMC6900468 DOI: 10.2147/dddt.s224312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Background Current clinical treatments for osteosarcoma are limited by disease recurrence and primary or secondary chemoresistance. Cancer stem-like cells have been proposed to facilitate the initiation, progression, recurrence and chemoresistance of osteosarcoma. Furthermore, previous studies have reported that IL-6-STAT3 pathway is overexpressed in various types of cancer and contributes to cell proliferation, apoptosis, invasion/migration, chemoresistance and modulation of stemness features. Aim To examined the effect of cinobufagin on cancer progression and modulation of stemness features in osteosarcoma, and investigated the molecular mechanisms underlying such effects. Methods Human osteosarcoma cell lines U2OS/MG-63 were recruited in this study. Cell proliferation, migration, and invasion were determined by MTT assay, colony formation assay,wound healing assay, and cell invasion assay respectively. Its effect on stemness was assessed by flow cytometry and mammosphere formation. The protein expression levels of related proteins were detected by Western blot. The xenograft model, immunofluorescence staining and immunohistochemistry were used to determine the effect of cinobufagin on tumorigenicity in vivo experiment. Results We found that cinobufagin suppressed the viability of U2OS/MG-63 spheroids/parent cells in a time-and dose-dependent manner. Notably, cinobufagin had no effect on the viability of hFOB 1.19 cells. Moreover, cinobufagin induced apoptosis, increased the width of wounds, reduced invasive osteosarcoma spheroids/parent cell numbers and reduced EMT phenotype and OPN levels in U2OS/MG-63 spheroids as well as U2OS/MG-63 parent cells lines. Noticeablely, we found that OPN levels were higher in spheroids group than that in parent cells. In addition, cinobufagin ameliorated the proportion of CD133-positive cells, the size of spheroids and Nanog, Sox-2 and Oct3/4 protein levels. Our in vivo experiments showed that cinobufagin consistently reduced tumor volume,the expressions of OPN, Sox-2, Oct3/4, Nanog and p-STAT3 by the immuno histochemistry staining as well as CD133 expression in tumor tissues by immunofluorescence analysis. From a mechanistic point of view, cinobufagin was shown to inhibit IL-6-OPN-STAT3 signaling pathway. Exogenous IL-6/OE-OPN/overexpression STAT3 attenuated the induction of cinobufagin-mediated apoptosis and the suppression of stemness properties respectively. Conclusion Collectively, our data demonstrated that cinobufagin inhibited the viability and tumorigenesis capability of osteosarcoma cells by blocking IL-6- OPN-STAT3 signaling pathway. Cinobufagin may therefore represent a promising therapeutic agent for osteosarcoma management. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/a2KF0PMRBDo
Collapse
Affiliation(s)
- Chuan Zhang
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Kun Ma
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Wu-Yin Li
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| |
Collapse
|
20
|
Ding X, Zheng L, Yang B, Wang X, Ying Y. Luteolin Attenuates Atherosclerosis Via Modulating Signal Transducer And Activator Of Transcription 3-Mediated Inflammatory Response. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3899-3911. [PMID: 31819365 PMCID: PMC6874161 DOI: 10.2147/dddt.s207185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Background Inflammatory factors play a crucial role throughout the development and progression of atherosclerosis, which has been considered as a chronic vascular inflammatory disease. Luteolin, a natural flavonoid which exists in many natural medicinal materials, has anti-inflammatory, anti-fibrotic and other pharmacological effects. Recently, the protective effects of luteolin on the cardiovascular disease have been reported. However, there is a paucity of studies on anti-atherosclerosis. Therefore, the anti-atherosclerosis potential of luteolin remains to be elucidated. Method ApoE-/- mice were fed with a high-fat diet to induce atherosclerosis in an animal model, where they were treated with oral administration of luteolin for 12 weeks. Primary mouse peritoneal macrophages challenged with oxidized low-density lipoprotein (oxLDL) were used for in vitro mechanistic study. The effectiveness of luteolin in the ApoE-/- mouse model of atherosclerosis was estimated in the aortic sinus and enface, and the underlying mechanisms were explored by molecular modeling study and siRNA-induced gene silencing. Results Our results showed that luteolin remarkably attenuated atherosclerosis in high-fat diet-induced ApoE-/- mouse via alleviating inflammation. We further found that luteolin decreased oxLDL-induced inflammation by inhibiting signal transducer and activator of transcription 3 (STAT3) in vitro, respectively. Further molecular modeling analysis indicated that luteolin interacted with STAT3 primarily through hydrogen bond interaction. Conclusion Luteolin could be a promising candidate molecule for atherosclerosis, and STAT3 may be a potential therapeutic target that could prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoji Ding
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Bo Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiaodong Wang
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| |
Collapse
|