1
|
Tang H, Kong Q, Zhang Z, Wu W, Yuan L, Liu X. Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. Purinergic Signal 2024:10.1007/s11302-024-10045-8. [PMID: 39215950 DOI: 10.1007/s11302-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.
Collapse
Affiliation(s)
- Hao Tang
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Terpe P, Ruhs S, Dubourg V, Bucher M, Gekle M. The synergism of cytosolic acidosis and reduced NAD +/NADH ratio is responsible for lactic acidosis-induced vascular smooth muscle cell impairment in sepsis. J Biomed Sci 2024; 31:3. [PMID: 38195466 PMCID: PMC10775599 DOI: 10.1186/s12929-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND During sepsis, serve vascular dysfunctions lead to life-threatening multiple organ failure, due to vascular smooth muscle cells (VSMC) impairments, resulting in vasoplegia, hypotension and hypoperfusion. In addition, septic patients have an altered cell metabolism that leads to lactic acidosis. Septic patients suffering from lactic acidosis have a high risk of mortality. In addition, septic survivors are at risk of secondary vascular disease. The underlying mechanisms of whether and how lactic acidosis leads to the changes in VSMCs is not well understood. The aim of this study was to comprehensively investigate the effect of lactic acidosis on VSMCs and additionally compare the effects with those induced by pure acidosis and sodium lactate. METHODS Primary human aortic smooth muscle cells (HAoSMCs) were treated for 48 h with lactic acidosis (LA_pH 6.8), hydrochloric acid (HCl_pH 6.8), sodium lactate (Na+-lactate_pH 7.4) and the respective controls (ctrl._pH 7.4; hyperosmolarity control: mannitol_pH 7.4) and comparatively analyzed for changes in (i) transcriptome, (ii) energy metabolism, and (iii) phenotype. RESULTS Both types of acidosis led to comparable and sustained intracellular acidification without affecting cell viability. RNA sequencing and detailed transcriptome analysis revealed more significant changes for lactic acidosis than for hydrochloric acidosis, with lactate being almost ineffective, suggesting qualitative and quantitative synergism of acidosis and lactate. Bioinformatic predictions in energy metabolism and phenotype were confirmed experimentally. Lactic acidosis resulted in strong inhibition of glycolysis, glutaminolysis, and altered mitochondrial respiration which reduced cellular ATP content, likely due to increased TXNIP expression and altered NAD+/NADH ratio. Hydrochloric acidosis induced significantly smaller effects without changing the NAD+/NADH ratio, with the ATP content remaining constant. These metabolic changes led to osteo-/chondrogenic/senescent transdifferentiation of VSMCs, with the effect being more pronounced in lactic acidosis than in pure acidosis. CONCLUSIONS Overall, lactic acidosis exerted a much stronger effect on energy metabolism than pure acidosis, whereas lactate had almost no effect, reflecting the qualitative and quantitative synergism of acidosis and lactate. As a consequence, lactic acidosis may lead to acute functional impairments of VSMC, sustained perturbations of the transcriptome and cellular dedifferentiation. Moreover, these effects may contribute to the acute and prolonged vascular pathomechanisms in septic patients.
Collapse
Affiliation(s)
- Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Stefanie Ruhs
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Michael Bucher
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
3
|
Díaz-Muñoz M, Hernández-Muñoz R, Butanda-Ochoa A. Structure-activity features of purines and their receptors: implications in cell physiopathology. MOLECULAR BIOMEDICINE 2022; 3:5. [PMID: 35079944 PMCID: PMC8789959 DOI: 10.1186/s43556-022-00068-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The purine molecular structure consists of fused pyrimidine and imidazole rings. Purines are main pieces that conform the structure of nucleic acids which rule the inheritance processes. Purines also work as metabolic intermediates in different cell functions and as messengers in the signaling pathways throughout cellular communication. Purines, mainly ATP and adenosine (ADO), perform their functional and pharmacological properties because of their structural/chemical characteristics that make them either targets of mutagenesis, mother frameworks for designing molecules with controlled effects (e.g. anti-cancer), or chemical donors (e.g., of methyl groups, which represent a potential chemoprotective action against cancer). Purines functions also come from their effect on specific receptors, channel-linked and G-protein coupled for ATP, and exclusively G-coupled receptors for ADO (also known as ADORAs), which are involved in cell signaling pathways, there, purines work as chemical messengers with autocrine, paracrine, and endocrine actions that regulate cell metabolism and immune response in tumor progression which depends on the receptor types involved in these signals. Purines also have antioxidant and anti-inflammatory properties and participate in the cell energy homeostasis. Therefore, purine physiology is important for a variety of functions relevant to cellular health; thus, when these molecules present a homeostatic imbalance, the stability and survival of the cellular systems become compromised.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México
| | - Armando Butanda-Ochoa
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
4
|
Lu Y, Yuan T, Min X, Yuan Z, Cai Z. AMPK: Potential Therapeutic Target for Vascular Calcification. Front Cardiovasc Med 2021; 8:670222. [PMID: 34046440 PMCID: PMC8144331 DOI: 10.3389/fcvm.2021.670222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is an urgent worldwide health issue with no available medical treatment. It is an active cell-driven process by osteogenic differentiation of vascular cells with complex mechanisms. The AMP-activated protein kinase (AMPK) serves as the master sensor of cellular energy status. Accumulating evidence reveals the vital role of AMPK in VC progression. AMPK is involved in VC in various ways, including inhibiting runt-related transcription factor 2 signaling pathways, triggering autophagy, attenuating endoplasmic reticulum stress and dynamic-related protein 1-mediated mitochondrial fission, and activating endothelial nitric oxide synthase. AMPK activators, like metformin, are associated with reduced calcification deposits in certain groups of patients, indicating that AMPK is a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tan Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinjia Min
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
5
|
Cudrici CD, Newman KA, Ferrante EA, Huffstutler R, Carney K, Betancourt B, Miettinen M, Siegel R, Katz JD, Nesti LJ, St Hilaire C, Lakshmipathy D, Wen H, Bagheri MH, Boehm M, Brofferio A. Multifocal Calcific Periarthritis with Distinctive Clinical and Radiological Features in Patients with CD73 Deficiency. Rheumatology (Oxford) 2021; 61:163-173. [PMID: 33744914 DOI: 10.1093/rheumatology/keab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Arterial calcification due to deficiency of CD73 (ACDC) is a hereditary autosomal recessive ectopic mineralization syndrome caused by loss-of-function mutations in the 5'-nucleotidase Ecto (NT5E) gene. Periarticular calcification has been reported but the clinical characterization of arthritis as well as the microstructure and chemical composition of periarticular calcifications and synovial fluid crystals has not been systematically investigated. METHODS Eight ACDC patients underwent extensive rheumatological and radiological evaluation over a period of 11 years. Periarticular and synovial biopsies were obtained from four patients. Characterization of crystal composition was evaluated by compensated polarized light microscopy, Alizarin red staining for synovial fluid along with x-ray diffraction and x-ray micro tomosynthesis for periarticular calcification. RESULTS Arthritis in ACDC patients has a clinical presentation of mixed erosive-degenerative joint changes with a median onset of articular symptoms at 17 years of age and progresses over time to the development of fixed deformities and functional limitations of small peripheral joints with eventually, larger joint and distinct axial involvement later in life. We have identified calcium pyrophosphate (CPP) and calcium hydroxyapatite (CHA) crystals in synovial fluid specimens and determined that CHA crystals are the principal component of periarticular calcifications. CONCLUSION This is the largest study in ACDC patients to describe erosive peripheral arthropathy and axial enthesopathic calcifications over a period of 11 years and the first to identify the composition of periarticular calcifications and synovial fluid crystals. ACDC should be considered among the genetic causes of early-onset osteoarthritis, as musculoskeletal disease signs may often precede vascular symptoms.
Collapse
Affiliation(s)
- Cornelia D Cudrici
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Kam A Newman
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Elisa A Ferrante
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Rebecca Huffstutler
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Katherine Carney
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Blas Betancourt
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA.,University of Florida, Division of Rheumatology & Clinical Immunology, Department of Medicine, Gainesville, FL, USA
| | - Markku Miettinen
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Richard Siegel
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA.,Novartis Institutes of Biomedical Research, Novartis Institutes of Biomedical Research, Translational Medicine, Autoimmunity, Transplantation and Inflammation Disease Area, Basel, CH USA
| | - James D Katz
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Leon J Nesti
- Walter Reed National Military Medical Center, Clinical and Experimental Orthopaedics, Bethesda, MD, USA
| | - Cynthia St Hilaire
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Cardiology, Department of Bioengineering, and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Deepak Lakshmipathy
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Han Wen
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Mohammad H Bagheri
- National Institutes of Health, Department of Radiology and Imaging Sciences, Clinical Center, Bethesda, MD, USA
| | - Manfred Boehm
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alessandra Brofferio
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
6
|
Extracellular Nucleotides Regulate Arterial Calcification by Activating Both Independent and Dependent Purinergic Receptor Signaling Pathways. Int J Mol Sci 2020; 21:ijms21207636. [PMID: 33076470 PMCID: PMC7589647 DOI: 10.3390/ijms21207636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5′-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor—pyrophosphate and the calcification stimulator—inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.
Collapse
|