1
|
Hu Z, Li W, Wei L, Ma J. Lactoferrin in cancer: Focus on mechanisms and translational medicine. Biochim Biophys Acta Rev Cancer 2025; 1880:189330. [PMID: 40274081 DOI: 10.1016/j.bbcan.2025.189330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Lactoferrin is an iron-binding glycoprotein that provides natural protective effects to the human body. Its biological properties, including antibacterial, antiviral, anti-inflammatory, immune-regulatory, and iron metabolism-regulating functions, have been extensively studied. With further research, lactoferrin's impact on tumorigenesis and tumor microenvironment has become increasingly evident, as it inhibits tumor proliferation, invasion, and metastasis through multiple pathways. This article summarizes the molecular mechanisms underlying lactoferrin's anticancer effects, explores its association with the malignant progression of various cancers, and highlights its clinical translational potential as a potential cancer biomarker and drug delivery carrier to enhance anticancer therapy efficiency. Due to the high safety profile of lactoferrin, its widespread application in the field of cancer treatment is highly anticipated.
Collapse
Affiliation(s)
- Zhengyu Hu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Wenchao Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Lingyu Wei
- Laboratory of Clinical Research Center, Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China.
| |
Collapse
|
2
|
Tillib SV, Goryainova OS, Sachko AM, Ivanova TI, Gaas MY, Vorob’ev NV, Kaprin AD, Shegay PV. Single-Domain Antibodies Used to Pretreat the Human Urinary Proteome in Cancer Biomarker Testing. Mol Biol 2022. [DOI: 10.1134/s0026893322040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
A linear-polymer-based lactoferrin-selective recognition element for an ELISA mimic: A proof of concept. Anal Chim Acta 2022; 1191:339309. [PMID: 35033252 DOI: 10.1016/j.aca.2021.339309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022]
Abstract
The synthesis of polymers with tailored properties for the recognition of macromolecules such as proteins is challenging. In this work, the synthesis of a new polymer format, a linear polymer (LP), as the selective recognition element for the globular protein lactoferrin (LF) is proposed as a proof-of-concept study. For the synthesis, a solid-phase strategy using the reversible deactivation radical polymerisation (RDRP) mechanism is proposed. This approach, which is usually used in molecular imprinting, involves the immobilisation of LF on the surface of a solid support, but, unlike classical imprinting, a cross-linker in the polymerisation mixture is not required. Consequently, the copolymer is soluble and flexible, thus overcoming the drawbacks associated with traditional synthetic polymers for macromolecule imprinting. This new polymer format has great potential for replacing natural antibodies in bioassays such as enzyme-linked immunosorbent assays (ELISA), dot blot, western blot, or pull-down. In our case, the linear polymer was used as a recognition element to replace natural antibodies in a LF-selective ELISA. The responses of the linear polymer between LF concentrations of 0.1 nM and 0.25 μM were studied, and a significant difference was observed between the non-specific signals and the signals measured in the presence of the polymeric material. Further, the response versus log concentration curves were fitted to a logistic equation, allowing estimation of the EC50 value: 11.8 ± 1.4 nM. We also confirmed the selective detection of LF using the competitive inhibition of the selective LF-biotin conjugate (LF-Bi) binding to the plastic receptor (LP) for closely related proteins (e.g. those having similar molecular weights or isoelectric points) such as human lysozyme, trypsin, and albumin, which are present in human body fluids. The system presents a cross-reactivity value or selectivity of 1.95% for lysozyme, 0.028% for trypsin, and 0.016% for albumin. The applicability of this method for the determination of urine LF levels in inflammatory and infectious diseases of the human urinary tract is also demonstrated.
Collapse
|
4
|
Shlyapnikov YM, Malakhova EA, Vinarov AZ, Zamyatnin AA, Shlyapnikova EA. Can new immunoassay techniques improve bladder cancer diagnostics With protein biomarkers? Front Mol Biosci 2021; 7:620687. [PMID: 33659273 PMCID: PMC7917292 DOI: 10.3389/fmolb.2020.620687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for new diagnostic tests for cancer or ways to improve existing tests is primarily driven by the desire to identify the disease as early as possible. In this report, we summarize the current knowledge of the most promising diagnostic protein bladder cancer (BC) markers reported over the last decade. Unfortunately, analysis of published data suggests that a reliable, highly sensitive biomarker test-system based on ELISA for detecting BC has not yet been developed. The use of more sensitive assays to detect ultra-low concentrations of biomarkers not available for ELISA, could be very beneficial. Based on the literature and pilot experimental data, we conclude that a highly sensitive immunoassay using microarrays and magnetic labels, could be an effective and cheap technique suitable for the detection of diagnostically relevant BC biomarkers.
Collapse
Affiliation(s)
- Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Russia
| | | | - Andrey Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | | |
Collapse
|