1
|
Yandrapally S, Mohareer K, Arekuti G, Vadankula GR, Banerjee S. HIV co-receptor-tropism: cellular and molecular events behind the enigmatic co-receptor switching. Crit Rev Microbiol 2021; 47:499-516. [PMID: 33900141 DOI: 10.1080/1040841x.2021.1902941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of cell-surface receptors and co-receptors is a crucial molecular event towards the establishment of HIV infection. HIV exists as several variants that differentially recognize the principal co-receptors, CCR5 and CXCR4, in different cell types, known as HIV co-receptor-tropism. The relative levels of these variants dynamically adjust to the changing host selection pressures to infect a vast repertoire of cells in a stage-specific manner. HIV infection sets in through immune cells such as dendritic cells, macrophages, and T-lymphocytes in the acute stage, while a wide range of other cells, including astrocytes, glial cells, B-lymphocytes, and epithelial cells, are infected during chronic stages. A change in tropism occurs during the transition from acute to a chronic phase, termed as co-receptor switching marked by a change in disease severity. The cellular and molecular events leading to co-receptor switching are poorly understood. This review aims to collate our present understanding of the dynamics of HIV co-receptor-tropism vis-à-vis host and viral factors, highlighting the cellular and molecular events involved therein. We present the possible correlations between virus entry, cell tropism, and co-receptor switching, speculating its consequences on disease progression, and proposing new scientific pursuits to help in an in-depth understanding of HIV biology.
Collapse
Affiliation(s)
| | | | - Geethika Arekuti
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
2
|
Al-Wahaibi LH, Al-Saleem MSM, Ahmed OAA, Fahmy UA, Alhakamy NA, Eid BG, Abdel-Naim AB, Abdel-Mageed WM, AlRasheed MM, Shazly GA. RETRACTED: Optimized Conjugation of Fluvastatin to HIV-1 TAT Displays Enhanced Pro-Apoptotic Activity in HepG2 Cells. Int J Mol Sci 2020; 21:E4138. [PMID: 32531976 PMCID: PMC7312570 DOI: 10.3390/ijms21114138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence indicates that statins reduce the risk of different cancers and inhibit the proliferation of liver cancer cells. This study aims to explore whether the electrostatic conjugation of optimized fluvastatin (FLV) to human immunodeficiency virus type 1 (HIV-1) trans-activator transcription peptide (TAT) would enhance the anti-proliferative activity against HepG2 cells. FLV-TAT conjugation was optimized to achieve the lowest size with highest zeta potential. Nine formulae were constructed, using a factorial design with three factors-FLV concentration, TAT concentration, and pH of the medium-while the responses were zeta potential and size. The optimized formula showed a particle size of 199.24 nm and 29.14 mV zeta potential. Data indicates that conjugation of FLV to TAT (optimized formula) significantly enhances anti-proliferative activity and uptake by HepG2 cells when compared to raw FLV. Flow cytometry showed significant accumulation of cells in the pre-G phase, which highlights higher apoptotic activity. Annexin V staining indicated a significant increase in total cell death in early and late apoptosis. This was confirmed by significantly elevated caspase 3 in cells exposed to FLV-TAT preparation. In conclusion, the FLV-TAT optimized formula exhibited improved anti-proliferative action against HepG2. This is partially attributed to the enhanced apoptotic effects and cellular uptake of FLV.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (L.H.A.-W.); (M.S.M.A.-S.)
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (L.H.A.-W.); (M.S.M.A.-S.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (N.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (N.A.A.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Maha M. AlRasheed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
Ajasin D, Eugenin EA. HIV-1 Tat: Role in Bystander Toxicity. Front Cell Infect Microbiol 2020; 10:61. [PMID: 32158701 PMCID: PMC7052126 DOI: 10.3389/fcimb.2020.00061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
HIV Tat protein is a critical protein that plays multiple roles in HIV pathogenesis. While its role as the transactivator of HIV transcription is well-established, other non-viral replication-associated functions have been described in several HIV-comorbidities even in the current antiretroviral therapy (ART) era. HIV Tat protein is produced and released into the extracellular space from cells with active HIV replication or from latently HIV-infected cells into neighboring uninfected cells even in the absence of active HIV replication and viral production due to effective ART. Neighboring uninfected and HIV-infected cells can take up the released Tat resulting in the upregulation of inflammatory genes and activation of pathways that leads to cytotoxicity observed in several comorbidities such as HIV associated neurocognitive disorder (HAND), HIV associated cardiovascular impairment, and accelerated aging. Thus, understanding how Tat modulates host and viral response is important in designing novel therapeutic approaches to target the chronic inflammatory effects of soluble viral proteins in HIV infection.
Collapse
Affiliation(s)
- David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Ronsard L, Sood V, Yousif AS, Ramesh J, Shankar V, Das J, Sumi N, Rai T, Mohankumar K, Sridharan S, Dorschel A, Ramachandran VG, Banerjea AC. Genetic Polymorphisms in the Open Reading Frame of the CCR5 gene From HIV-1 Seronegative and Seropositive Individuals From National Capital Regions of India. Sci Rep 2019; 9:7594. [PMID: 31110236 PMCID: PMC6527560 DOI: 10.1038/s41598-019-44136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
C-C chemokine receptor type 5 (CCR5) serves as a co-receptor for Human immunodeficiency virus (HIV), enabling the virus to enter human CD4 T cells and macrophages. In the absence of CCR5, HIV strains that require CCR5 (R5 or M-tropic HIV) fail to successfully initiate infection. Various natural mutations of the CCR5 gene have been reported to interfere with the HIV-CCR5 interaction, which influences the rate of AIDS progression. Genetic characterization of the CCR5 gene in individuals from the National Capital Regions (NCRs) of India revealed several natural point mutations in HIV seropositive/negative individuals. Furthermore, we identified novel frame-shifts mutations in the CCR5 gene in HIV seronegative individuals, as well as the well reported CCR5Δ32 mutation. Additionally, we observed a number of mutations present only in HIV seropositive individuals. This is the first report to describe the genetic variations of CCR5 in individuals from the NCRs of India and demonstrates the utility of investigating understudied populations to identify novel CCR5 polymorphisms.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of Immunology, New Delhi, India. .,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India. .,Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, USA.
| | - Vikas Sood
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, USA
| | - Janani Ramesh
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay Shankar
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, USA
| | - N Sumi
- Endocrinology & Toxicology Lab, Department of Zoology, University of Calicut, Kerala, India
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Delhi, India
| | | | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | | | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
5
|
Roy CN, Khandaker I, Oshitani H. Intersubtype Genetic Variation of HIV-1 Tat Exon 1. AIDS Res Hum Retroviruses 2015; 31:641-8. [PMID: 25748226 DOI: 10.1089/aid.2014.0346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 Tat is a regulatory protein that plays a pivotal role in viral transcription and replication. Our study aims to investigate the genetic variation of Tat exon 1 in all subtypes of HIV-1: A, B, C, D, F, G, H, J, and K. We performed phylogenetic, mutation, and selection pressure analyses on a total of 1,179 sequences of different subtypes of HIV-1 Tat obtained from the Los Alamos National Laboratory (LANL). The mean nucleotide divergences (%) among the analyzed sequences of subtypes A, B, C, D, F, G, H, J, and K were 88, 89, 90, 88, 86, 89, 88, 97, and 97, respectively. We revealed that subtype B evolved relatively faster than other subtypes. The second and fifth domains were found comparatively more variable among all subtypes. Site-by-site tests of positive selection revealed that several positions in all subtypes were under significant positive selection. Positively selected sites were found in the acidic domain at positions 3, 4, and 19, in the cysteine-rich domains at positions 24, 29, 32, and 36, in the core domain at position 40, and in the basic domain for the rest of the positions for all subtypes. Positions 58 and 68 in the basic domain were positively selected in subtypes A, B, C and B, C, F, respectively. We also observed high variability within positively selected sites in amino acid positions. Our study findings on HIV-1 Tat genetic variability may contribute to a better understanding of HIV-1 evolution as well as to the development of effective Tat-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
- Chandra Nath Roy
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Irona Khandaker
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9:2241-57. [PMID: 24872687 PMCID: PMC4026551 DOI: 10.2147/ijn.s61288] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed.
Collapse
Affiliation(s)
- Cui-Tao Lu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People's Republic of China
| | - Ying-Zheng Zhao
- Hainan Medical College, Haikou City, Hainan Province, People's Republic of China ; College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Lei Peng
- Hainan Medical College, Haikou City, Hainan Province, People's Republic of China
| | - Xin-Qiao Tian
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People's Republic of China
| |
Collapse
|
7
|
HIV-1 Tat protein induces PD-L1 (B7-H1) expression on dendritic cells through tumor necrosis factor alpha- and toll-like receptor 4-mediated mechanisms. J Virol 2014; 88:6672-89. [PMID: 24696476 DOI: 10.1128/jvi.00825-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 1-45 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-α) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-α- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV-1) Tat on the PD-1/PD-L1 coinhibitory pathway on human monocyte-derived dendritic cells (MoDCs). We found that treatment of MoDCs from either healthy or HIV-1-infected patients with HIV-1 Tat protein stimulated the expression of PD-L1. We demonstrate that this stimulation was mediated through an indirect mechanism, involving tumor necrosis factor alpha (TNF-α) and Toll-like receptor 4 (TLR4) pathways, and resulted in compromised ability of Tat-treated MoDCs to functionally stimulate T-cell proliferation.
Collapse
|
8
|
Ronsard L, Lata S, Singh J, Ramachandran VG, Das S, Banerjea AC. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications. PLoS One 2014; 9:e85452. [PMID: 24465566 PMCID: PMC3900424 DOI: 10.1371/journal.pone.0085452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Designing an ideal vaccine against HIV-1 has been difficult due to enormous genetic variability as a result of high replication rate and lack of proofreading activity of reverse transcriptase leading to emergence of genetic variants and recombinants. Tat transactivates HIV-1 LTR, resulting in a remarkable increase in viral gene expression, and plays a vital role in pathogenesis. The aim of this study was to characterize the genetic variations of Tat exon-1 from HIV-1 infected patients from North India. METHODS Genomic DNA was isolated from PBMCs and Tat exon-1 was PCR amplified with specific primers followed by cloning, sequencing and sequence analyses using bioinformatic tools for predicting HIV-1 subtypes, recombination events, conservation of domains and phosphorylation sites, and LTR transactivation by luciferase assay. RESULTS Phylogenetic analysis of Tat exon-1 variants (n = 120) revealed sequence similarity with South African Tat C sequences and distinct geographical relationships were observed for B/C recombinants. Bootscan analysis of our variants showed 90% homology to Tat C and 10% to B/C recombinants with a precise breakpoint. Natural substitutions were observed with high allelic frequencies which may be beneficial for virus. High amino acid conservation was observed in Tat among Anti Retroviral Therapy (ART) recipients. Barring few changes, most of the functional domains, predicted motifs and phosphorylation sites were well conserved in most of Tat variants. dN/dS analysis revealed purifying selection, implying the importance of functional conservation of Tat exon-1. Our Indian Tat C variants and B/C recombinants showed differential LTR transactivation. CONCLUSIONS The possible role of Tat exon-1 variants in shaping the current HIV-1 epidemic in North India was highlighted. Natural substitutions across conserved functional domains were observed and provided evidence for the emergence of B/C recombinants within the ORF of Tat exon-1. These events are likely to have implications for viral pathogenesis and vaccine formulations.
Collapse
Affiliation(s)
- Larance Ronsard
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Sneh Lata
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Jyotsna Singh
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | | | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Akhil C. Banerjea
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
9
|
Planès R, Bahraoui E. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on T cells proliferation. PLoS One 2013; 8:e74551. [PMID: 24073214 PMCID: PMC3779232 DOI: 10.1371/journal.pone.0074551] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022] Open
Abstract
During HIV-1 infection, an increase of indoleamine 2,3 dioxygenase (IDO) expression, and dendritic cells (DC) dysfunction were often associated with AIDS disease progression. In this work, we investigated the effect of HIV-1 Tat protein on the expression of IDO, in MoDCs. We show that Tat induces IDO protein expression and activity in a dose dependent manner by acting at the cell membrane. Using Tat-mutants, we show that the N-Terminal domain, Tat 1–45, but not the central region, Tat 30–72, is sufficient to induce the expression of active IDO. Tat protein is also able to induce several cytokines in MoDCs, including IFN-γ, a strong inducer of IDO. In order to understand whether IDO is induced directly by Tat protein or indirectly following IFN-γ production, complementary experiments were performed and showed that: i) at the kinetic level, Tat induced IDO expression before the production of IFN-γ ii) treatment of MoDCs with Tat-conditioned medium was unable to stimulate IDO expression, iii) coculture of MoDCs in a transwell cell system did not allow IDO expression in MoDCs not previously treated by Tat, iv) direct contact between Tat-treated and untreated MoDCs was not sufficient to induce IDO expression in a Tat-independent manner, and v) treatment of MoDCs in the presence of IFN-γ pathway inhibitors, Jak I and Ly294002, inhibited IFN-γ-induced IDO but had no effect on Tat-induced IDO. At the functional level, our data showed that treatment of MoDCs with Tat led to the inhibition of their capacity to stimulate T cell proliferation. This impairement was totally abolished when the stimulation was performed in the presence of 1MT, an inhibitor of IDO activity, arguing for the implication of the kynurenine pathway. By inducing IDO, Tat protein may be considered, as a viral pathogenic factor, in the dysregulation of the DC functions during HIV-1 infection.
Collapse
Affiliation(s)
- Rémi Planès
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université Paul Sabatier, EA 3038, Toulouse, France
| | - Elmostafa Bahraoui
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université Paul Sabatier, EA 3038, Toulouse, France
- * E-mail:
| |
Collapse
|
10
|
tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. J Virol 2013; 87:5732-45. [PMID: 23487450 DOI: 10.1128/jvi.03297-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a mediator of viral transcription and is involved in the control of virus replication. However, associations between HIV-1 Tat diversity and functional effects during primary HIV-1 infection are still unclear. We estimated selection pressures in tat exon 1 using the mixed-effects model of evolution with 672 viral sequences generated from 20 patients infected with HIV-1 subtype C (HIV-1C) over 500 days postseroconversion. tat exon 1 residues 3, 4, 21, 24, 29, 39, and 68 were under positive selection, and we established that specific amino acid signature patterns were apparent in primary HIV-1C infection compared with chronic infection. We assessed the impact of these mutations on long terminal repeat (LTR) activity and found that Tat activity was negatively affected by the Ala(21) substitution identified in 13/20 (65%) of patients, which reduced LTR activity by 88% (± 1%) (P < 0.001). The greatest increase in Tat activity was seen with the Gln(35)/Lys(39) double mutant that resulted in an additional 49% (± 14%) production of LTR-driven luciferase (P = 0.012). There was a moderate positive correlation between Tat-mediated LTR activity and HIV-1 RNA in plasma (P = 0.026; r = 0.400) after 180 days postseroconversion that was reduced by 500 days postseroconversion (P = 0.043; r = 0.266). Although Tat activation of the LTR is not a strong predictor of these clinical variables, there are significant linear relationships between Tat transactivation and patients' plasma viral loads and CD4 counts, highlighting the complex interplay between Tat mutations in early HIV-1C infection.
Collapse
|
11
|
Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK. Tits and bits of HIV Tat protein. Expert Opin Biol Ther 2011; 11:269-83. [PMID: 21204735 DOI: 10.1517/14712598.2011.546339] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION HIV-Tat protein displays an array of functions that are essential for HIV replication. The structural flexibility of Tat protein has been regarded as one of the unique features responsible for sustaining diverse functions, from facilitated membrane-crossing ability to strong affinity for RNA binding. AREAS COVERED RNA binding ability and presence of multiple interacting domains in the same protein are very important properties of HIV-Tat protein. Tat protein has shown great ability to influence cellular and viral gene expression. We discuss the functions of HIV Tat protein, describing its structural significance, secretion and uptake of HIV Tat protein by immune cells, post-translational modifications and role of HIV Tat protein in HIV pathogenesis. EXPERT OPINION Perturbation in expression of many cytokines and chemokines by HIV-Tat protein exhibits downstream immune suppressive function as well as activation of several apoptotic genes. This explains the massive death of immune cells due to bystander effect of HIV Tat protein among HIV-infected patients.
Collapse
Affiliation(s)
- Manish K Johri
- Laboratory of Neurovirology & Inflammation Biology, Section of Infectious Diseases, Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500007, (A.P), India
| | | | | | | | | |
Collapse
|
12
|
Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 2010; 62:503-17. [PMID: 19914319 DOI: 10.1016/j.addr.2009.11.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/14/2009] [Indexed: 01/16/2023]
Abstract
Human immunodeficiency virus (HIV) can gain access to the central nervous system during the early course of primary infection. Once in the brain compartment the virus actively replicates to form an independent viral reservoir, resulting in debilitating neurological complications, latent infection and drug resistance. Current antiretroviral drugs (ARVs) often fail to effectively reduce the HIV viral load in the brain. This, in part, is due to the poor transport of many ARVs, in particular protease inhibitors, across the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSBF). Studies have shown that nanocarriers including polymeric nanoparticles, liposomes, solid lipid nanoparticles (SLN) and micelles can increase the local drug concentration gradients, facilitate drug transport into the brain via endocytotic pathways and inhibit the ATP-binding cassette (ABC) transporters expressed at the barrier sites. By delivering ARVs with nanocarriers, significant increase in the drug bioavailability to the brain is expected to be achieved. Recent studies show that the specificity and efficiency of ARVs delivery can be further enhanced by using nanocarriers with specific brain targeting, cell penetrating ligands or ABC-transporters inhibitors. Future research should focus on achieving brain delivery of ARVs in a safe, efficient, and yet cost-effective manner.
Collapse
|
13
|
Abstract
The development of antiretroviral drugs over the past couple of decades has been commendable owing to the identification of several new targets within the overall HIV replication cycle. However, complete control over HIV/AIDS is yet to be achieved. This is because the current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. This occurs because most anti-HIV drugs do not accumulate in certain cellular and anatomical reservoirs including the CNS. Insufficient delivery of anti-HIV drugs to the CNS is attributed to their low permeability across the BBB. Hence, low and sustained viral replication within the CNS continues even during prolonged antiretroviral drug therapy. Therefore, developing novel approaches that are targeted at enhancing the CNS delivery of anti-HIV drugs are required. In this review, we discuss the potential of nanocarriers and the role of cell-penetrating peptides in enhancing drug delivery to the CNS. Such drug delivery approaches could also lead to higher drug delivery to other cellular and anatomical reservoirs where the virus harbors than with conventional treatment, thus providing an effective therapy to eliminate the virus completely from the body.
Collapse
Affiliation(s)
- Kavitha S Rao
- Lerner Research Institute,, Cleveland Clinic, Department of Biomedical Engineering/ND-20, Cleveland, OH 44195, USA
| | | | | |
Collapse
|