1
|
Jiang H, Milanov M, Jüngert G, Angebauer L, Flender C, Smudde E, Gather F, Vogel T, Jessen HJ, Koch HG. Control of a chemical chaperone by a universally conserved ATPase. iScience 2024; 27:110215. [PMID: 38993675 PMCID: PMC11237923 DOI: 10.1016/j.isci.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriela Jüngert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Clara Flender
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Smudde
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Fabian Gather
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute for Organic Chemistry, Faculty of Chemistry and Pharmacy, University Freiburg 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Liu J, Huang J, Lu J, Ouyang R, Xu W, Zhang J, Chen-Xiao K, Wu C, Shang D, Go VLWB, Guo J, Xiao GG. Obg-like ATPase 1 exacerbated gemcitabine drug resistance of pancreatic cancer. iScience 2024; 27:110027. [PMID: 38883822 PMCID: PMC11177196 DOI: 10.1016/j.isci.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a poor prognosis due to inefficient diagnosis and tenacious drug resistance. Obg-like ATPase 1 (OLA1) is overexpressed in many malignant tumors. The molecular mechanism of OLA1 underlying gemcitabine (GEM)-induced drug resistance was investigated in this study. An enhanced expression of OLA1 was observed in a GEM acquired resistant pancreatic cancer cell lines and in patients with pancreatic cancer. Overexpressed OLA1 showed poor overall survival rates in patients with pancreatic cancer. Dysregulation of the OLA1 reduced expression of CD44+/CD133+, and improved the sensitivity of pancreatic cancer cells to GEM. OLA1 highly expression facilitated the formation of the OLA1/Sonic Hedgehog (SHH)/Hedgehog-interacting protein (HHIP) complex in nuclei, resulting in the inhibition of negative feedback of Hedgehog signaling induced by HHIP. This study suggests that OLA1 may be developed as an innovative drug target for an effective therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Institute of clinical medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Lu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wenchao Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kevin Chen-Xiao
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, San Francisco, CA, USA
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Vay Liang W Bill Go
- The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Bian R, Zhao J, Yao Z, Cai Y, Shou C, Lou D, Zhou L, Qian Y. Knockdown of Obg-like ATPase 1 enhances sorafenib sensitivity by inhibition of GSK-3β/β-catenin signaling in hepatocellular carcinoma cells. J Gastrointest Oncol 2022; 13:1255-1265. [PMID: 35837205 PMCID: PMC9274060 DOI: 10.21037/jgo-22-458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To clarify the molecular mechanism of hepatocellular carcinoma (HCC), conducive to developing an effective HCC therapy. Owing to the severe drug resistance, the clinical use of sorafenib, which is approved for HCC treatment, is limited. The precise molecular mechanisms of sorafenib drug resistance remain unclear. In the current work, we evaluated the role of Obg-like ATPase 1 (OLA1) in sorafenib resistance in HCC. METHODS The survival of HCC patients between OLA1 expression and sorafenib treatment was analyzed by Kaplan-Meier plotter. Cell viability was measured by cell counting kit-8 (CCK-8) and colony formation assays. Cell death was detected by propidium iodide (PI) and trypan blue staining. The mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB), respectively. RESULTS We found that OLA1 was highly correlated with sorafenib resistance of HCC through a public database. Further study showed that knockdown of OLA1 enhanced cell proliferation inhibition and cell death induced by sorafenib, along with a reduction of proliferation-associated proteins (c-Myc and cyclin D1) and increase of apoptosis-related proteins (cleaved caspase-3 and cleaved PARP) in HCC cells. In addition, knockdown of OLA1 reduced the activation of glycogen synthase kinase 3β (GSK-3β)/β-catenin. CONCLUSIONS Our results proved that OLA1 can be a potential target to enhance sorafenib sensitivity in HCC.
Collapse
Affiliation(s)
- Rong Bian
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Jinkai Zhao
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Zhongcai Yao
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Yajun Cai
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Chenting Shou
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Dayong Lou
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Liqin Zhou
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Yuanyuan Qian
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
6
|
Dannenmaier S, Desroches Altamirano C, Schüler L, Zhang Y, Hummel J, Milanov M, Oeljeklaus S, Koch HG, Rospert S, Alberti S, Warscheid B. Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae. J Biol Chem 2021; 297:101050. [PMID: 34571008 PMCID: PMC8531669 DOI: 10.1016/j.jbc.2021.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The universally conserved P-loop ATPase Ola1 is implicated in various cellular stress response pathways, as well as in cancer and tumor progression. However, Ola1p functions are divergent between species, and the involved mechanisms are only poorly understood. Here, we studied the role of Ola1p in the heat shock response of the yeast Saccharomyces cerevisiae using a combination of quantitative and pulse labeling-based proteomics approaches, in vitro studies, and cell-based assays. Our data show that when heat stress is applied to cells lacking Ola1p, the expression of stress-protective proteins is enhanced. During heat stress Ola1p associates with detergent-resistant protein aggregates and rapidly forms assemblies that localize to stress granules. The assembly of Ola1p was also observed in vitro using purified protein and conditions, which resembled those in living cells. We show that loss of Ola1p results in increased protein ubiquitination of detergent-insoluble aggregates recovered from heat-shocked cells. When cells lacking Ola1p were subsequently relieved from heat stress, reinitiation of translation was delayed, whereas, at the same time, de novo synthesis of central factors required for protein refolding and the clearance of aggregates was enhanced when compared with wild-type cells. The combined data suggest that upon acute heat stress, Ola1p is involved in the stabilization of misfolded proteins, which become sequestered in cytoplasmic stress granules. This function of Ola1p enables cells to resume translation in a timely manner as soon as heat stress is relieved.
Collapse
Affiliation(s)
- Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Lisa Schüler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Hummel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Simon Alberti
- BIOTEC and CMCB, Technische Universität Dresden, Dresden, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Dong Y, Yin A, Xu C, Jiang H, Wang Q, Wu W, Guo S. OLA1 is a potential prognostic molecular biomarker for endometrial cancer and promotes tumor progression. Oncol Lett 2021; 22:576. [PMID: 34122627 PMCID: PMC8190771 DOI: 10.3892/ol.2021.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/21/2021] [Indexed: 11/05/2022] Open
Abstract
Obg-like ATPase 1 (OLA1) is upregulated in the tumor tissues in different types of cancer. However, the function of OLA1 and its molecular mechanisms in endometrial cancer (EC) remain unknown. The present study aimed to elucidate OLA1 expression level and its biological function in endometrial cancer. The differential expression of OLA1 between EC tissues and non-cancerous tissues was analyzed using The Cancer Genome Atlas database and clinical samples. The association between clinicopathological characteristics and OLA1 expression was analyzed using bioinformatics analysis. Cell proliferation, migration and invasion were analyzed by short interfering RNA-mediated knockdown experiments, Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine incorporation, wound healing, Transwell and Boyden assays. The potential signaling pathways associated with OLA1 in endometrial cancer were evaluated by Gene Set Enrichment Analysis. The expression levels of OLA1 in EC tissues were upregulated compared with that in non-cancerous tissues (P<0.001). Furthermore, patients with worse survival were found to have higher OLA1 expression, and increased OLA1 expression in endometrial cancer associated with clinical stage (P<0.01), histological type (P<0.01), histological grade (P<0.01), menstrual status (P<0.01), cancer status (P<0.05) and distant metastasis (P<0.05). In RL95-2 and HEC-1B cell lines, decreased levels of OLA1 inhibited proliferation, invasion and migration, and the TGF-β signaling pathway, ubiquitin-mediated proteolysis and Wnt signaling pathway may be involved in these mechanisms. The present study revealed that OLA1 could be a potential prognostic indicator and therapeutic target in endometrial cancer, and that the TGF-β signaling, Wnt signaling and ubiquitin-mediated proteolysis pathways may be regulated by OLA1.
Collapse
Affiliation(s)
- Yanqi Dong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Aiqi Yin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Caiqu Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Huiping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Qinghai Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Wenjuan Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
8
|
Feng Y, Fu M, Guan X, Wang C, Yuan F, Bai Y, Meng H, Li G, Wei W, Li H, Li M, Jie J, Lu Y, Guo H. Uric Acid Mediated the Association Between BMI and Postmenopausal Breast Cancer Incidence: A Bidirectional Mendelian Randomization Analysis and Prospective Cohort Study. Front Endocrinol (Lausanne) 2021; 12:742411. [PMID: 35185779 PMCID: PMC8850312 DOI: 10.3389/fendo.2021.742411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Observational epidemiological studies have reported the associations of high body mass index (BMI) with elevated serum uric acid (UA) level and increased risk of postmenopausal breast cancer. However, whether UA is causally induced by BMI and functioned in the BMI-breast cancer relationship remains unclear. METHODS To elucidate the causality direction between BMI and serum UA, the bidirectional Mendelian randomization (MR) analyses were performed by using summarized data from the largest Asian genome-wide association studies (GWAS) of BMI and UA carried out in over 150,000 Japanese populations. Then, a total of 19,518 postmenopausal women from the Dongfeng-Tongji (DFTJ) cohort (with a mean 8.2-year follow-up) were included and analyzed on the associations of BMI and serum UA with incidence risk of postmenopausal breast cancer by using multivariable Cox proportional hazard regression models. Mediation analysis was further conducted among DFTJ cohort to assess the intermediate role of serum UA in the BMI-breast cancer association. RESULTS In the bidirectional MR analyses, we observed that genetically determined BMI was causally associated with elevated serum UA [β(95% CI) = 0.225(0.111, 0.339), p < 0.001], but not vice versa. In the DFTJ cohort, each standard deviation (SD) increment in BMI (3.5 kg/m2) and UA (75.4 μmol/l) was associated with a separate 24% and 22% increased risk of postmenopausal breast cancer [HR(95% CI) = 1.24(1.07, 1.44) and 1.22(1.05, 1.42), respectively]. More importantly, serum UA could mediate 16.9% of the association between BMI and incident postmenopausal breast cancer. CONCLUSIONS The current findings revealed a causal effect of BMI on increasing serum UA and highlighted the mediating role of UA in the BMI-breast cancer relationship. Controlling the serum level of UA among overweight postmenopausal women may help to decrease their incident risk of breast cancer.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Huan Guo,
| |
Collapse
|
9
|
Liu J, Yang Q, Xiao KC, Dobleman T, Hu S, Xiao GG. Obg-like ATPase 1 inhibited oral carcinoma cell metastasis through TGFβ/SMAD2 axis in vitro. BMC Mol Cell Biol 2020; 21:65. [PMID: 32928102 PMCID: PMC7489017 DOI: 10.1186/s12860-020-00311-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The human Obg-like ATPase 1 (OLA1) protein has been reported to play an important role in cancer cell proliferation. The molecular mechanism underlying OLA1 regulated oral metastasis is still unknown. We investigated in this study the regulatory role of OLA1 playing in oral squamous cell metastasis. RESULTS A series of in vitro assays were performed in the cells with RNAi-mediated knockdown or overexpression to expound the regulatory function of OLA1 in oral cancer. We found that the endogenous level of OLA1 in a highly metastatic oral squamous cell line was significantly lower than that in low metastatic oral cells as well as in normal oral cells. Escalated expression of OLA1 resulted in a reduced ability of metastasis in highly metastatic cells, and enhanced its sensitivity to the paclitaxel treatment. Further analysis of the EMT markers showed that Snail, Slug, N-cadherin were up-expressed significantly. Meanwhile, E-cadherin was significantly down-regulated in the oral cancer cells with OLA1-knocked down, suggesting that OLA1 inactivated EMT process. Furthermore, we found that OLA1 suppressed oral squamous cell metastasis by suppressing the activity of a TGFβ/SMAD2/EMT pathway. CONCLUSION Our data suggests that OLA1 may be developed as a potential target for the treatment of oral cancer metastasis.
Collapse
Affiliation(s)
- Jianzhou Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kevin Chen Xiao
- School of Dentistry, University of California Los Angeles, Los Angeles, 90095, USA
| | - Thomas Dobleman
- Functional Genomics and Proteomics Center, Creighton University Medical Center, Omaha, 68131, USA
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, 90095, USA
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Functional Genomics and Proteomics Center, Creighton University Medical Center, Omaha, 68131, USA.
| |
Collapse
|
10
|
Liu J, Miao X, Xiao B, Huang J, Tao X, Zhang J, Zhao H, Pan Y, Wang H, Gao G, Xiao GG. Obg-Like ATPase 1 Enhances Chemoresistance of Breast Cancer via Activation of TGF-β/Smad Axis Cascades. Front Pharmacol 2020; 11:666. [PMID: 32528278 PMCID: PMC7266972 DOI: 10.3389/fphar.2020.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding the molecular mechanism of drug resistance helps to identify an effective target for breast cancer therapy. In this study we investigated the regulatory role of Obg-like ATPase 1 which is involved in multiple uses of drug resistance against breast cancer. Paclitaxel resistant cell line (MCF-7-PTR) was developed by a continuous increasing paclitaxel concentration. MTT assay was used to validate either acquired resistant or OLA1 modified cell lines. qRT-PCR, western blotting, apoptosis, and cell cycle assays were executed to evaluate gene and protein expression in cell lines. A series of in vitro assays was performed in the cells with RNAi-mediated knockdown to expound the regulatory function of OLA1 in breast cancer. We demonstrated that OLA1 was highly correlated with either acquired or intrinsic resistance of breast cancer. Further study showed that escalated expression of OLA1 promoted the EMT process in tumor cells through TGF-β/Smad signaling cascades, resulting in the enhanced expression of anti-apoptosis-related proteins (cleaved caspase3, Bax, Bcl-2) and the strengthening depolymerization of microtubules in tumor cells. Our findings revealed that OLA1 enhanced the anti-apoptotic ability and elucidated a regulatory role of OLA1 in promoting chemotherapy resistance of breast cancer. Chemo-sensitivity of the disease can be thus enhanced significantly by knocked down OLA1, which led to the inactivation of the TGF-β/Smad signaling cascades, polymerized microtubules, and promoted cell apoptosis. Our data suggest that OLA1 may be developed as a potential target to improve chemotherapy of patients with breast cancer.
Collapse
Affiliation(s)
- Jianzhou Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.,School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Miao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bowen Xiao
- Cardiothoracic Surgery, Changsha Central Hospital Affiliated to Nanhua University, Changsha, China
| | - Jing Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jiong Zhang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hua Zhao
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hongwei Wang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.,School of Bioengineering, Dalian University of Technology, Dalian, China.,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States
| |
Collapse
|
11
|
Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam NL, Wang Z, Yu J, Huang B, Zhuang H, Zhou Z, Ma Z, Sun Z, He X, Zhou Q, Hou B, Wu L. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:3025-3041. [PMID: 32045367 PMCID: PMC7041778 DOI: 10.18632/aging.102797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/12/2020] [Indexed: 12/19/2022]
Abstract
Background: Obg-like ATPase 1 (OLA1) has been found to have a dual role in cancers. However, the relationship between OLA1 and hepatocellular carcinoma (HCC) remains unclear. Results: High expression of OLA1 in HCC was detected in public datasets and clinical samples, and correlated with poor prognosis. Downregulation of OLA1 significantly inhibited the proliferation, migration, invasion and tumorigenicity of HCC cells. Mechanistically, GSEA showed that OLA1 might promote tumor progression by regulating the cell cycle and apoptosis. In addition, OLA1 knockdown resulted in G0/G1 phase arrest and high levels of apoptosis. OLA1 could bind with P21 and upregulate CDK2 expression to promote HCC progression. Conclusions: Overall, these findings uncover a role for OLA1 in regulating the proliferation and apoptosis of HCC cells. Materials and methods: The Cancer Genome Atlas and Gene Expression Omnibus datasets were analyzed to identify gene expression. Immunohistochemistry staining, western blot and real-time polymerase chain reaction were performed to evaluate OLA1 expression in samples. Cell count Kit-8, wound-healing, transwell and flow cytometry assays were used to analyze HCC cell progression. Subcutaneous xenotransplantation models were used to investigate the role of OLA1 in vivo. Coimmunoprecipitation was used to analyze protein interactions.
Collapse
Affiliation(s)
- Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Nga Lei Tam
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Division of Hepatobiliary Surgery, Zhuhai 519000, China
| | - Zekang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jia Yu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zhonghai Sun
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.,China Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Ding W, Zhang J, Wu SC, Zhang S, Christie P, Liang P. Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109549. [PMID: 31408818 DOI: 10.1016/j.ecoenv.2019.109549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 05/19/2023]
Abstract
Paspalum distichum L. was tested to evaluate its ability to phytoremediate mercury (Hg) contaminated soil over a 60-d period by analysis of the total Hg concentrations in roots and leaves. Hg concentration in Hg-contamination soil decreased by 70.0 μg g-1 after 60 day of grass cultivation and Hg was readily taken up by the roots (4.51 ± 1.90 μg g-1) rather than the leaves (0.35 ± 0.02 μg g-1). In addition, a comparative proteomic study was performed to unravel the protein expression involved in the Hg stress response in P. distichum L. A total of 49 proteins were classified as differentially proteins in the roots by the 'top three' proteomic analysis, of which 32 were up-regulated and 17 down-regulated in response to Hg stress. These changed proteins were classified by gene ontology analysis into five complex molecular functions involving photosynthesis and energy metabolism (31%), oxidative stress (14%), protein folding (16%), sulfur compound metabolism (10%), metal binding, and ion transport (29%). Moreover, the protein expression patterns were consistent with the metabolism pathway results. Overall, the results contribute to our understanding of the molecular mechanisms of the Hg response in P. distichum and we propose a theoretical basis for the phytoremediation of Hg-contaminated soils.
Collapse
Affiliation(s)
- Wen Ding
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Sheng-Chun Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Su Zhang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Peter Christie
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China.
| |
Collapse
|
13
|
Schultz A, Olorundami OA, Teng RJ, Jarzembowski J, Shi ZZ, Kumar SN, Pritchard K, Konduri GG, Afolayan AJ. Decreased OLA1 (Obg-Like ATPase-1) Expression Drives Ubiquitin-Proteasome Pathways to Downregulate Mitochondrial SOD2 (Superoxide Dismutase) in Persistent Pulmonary Hypertension of the Newborn. Hypertension 2019; 74:957-966. [PMID: 31476900 DOI: 10.1161/hypertensionaha.119.13430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a failure of pulmonary vascular resistance to decline at birth rapidly. One principal mechanism implicated in PPHN development is mitochondrial oxidative stress. Expression and activity of mitochondrial SOD2 (superoxide dismutase) are decreased in PPHN; however, the mechanism remains unknown. Recently, OLA1 (Obg-like ATPase-1) was shown to act as a critical regulator of proteins controlling cell response to stress including Hsp70, an obligate chaperone for SOD2. Here, we investigated whether OLA1 is causally linked to PPHN. Compared with controls, SOD2 expression is reduced in distal-pulmonary arteries (PAs) from patients with PPHN and fetal-lamb models. Disruptions of the SOD2 gene reproduced PPHN phenotypes, manifested by elevated right ventricular systolic pressure, PA-endothelial cells apoptosis, and PA-smooth muscle cells proliferation. Analyses of SOD2 protein dynamics revealed higher ubiquitinated-SOD2 protein levels in PPHN-lambs, suggesting dysregulated protein ubiquitination. OLA1 controls multiple proteostatic mechanisms and is overexpressed in response to stress. We demonstrated that OLA1 acts as a molecular chaperone, and its activity is induced by stress. Strikingly, OLA1 expression is decreased in distal-PAs from PPHN-patients and fetal-lambs. OLA1 deficiency enhanced CHIP affinity for Hsp70-SOD2 complexes, facilitating SOD2 degradation. Consequently, mitochondrial H2O2 formation is impaired, leading to XIAP (X-linked inhibitor of apoptosis) overexpression that suppresses caspase activity in PA-smooth muscle cells, allowing them to survive and proliferate, contributing to PA remodeling. In-vivo, ola1-/- downregulated SOD2 expression, induced distal-PA remodeling, and right ventricular hypertrophy. We conclude that decreased OLA1 expression accounts for SOD2 downregulation and, therefore, a therapeutic target in PPHN treatments.
Collapse
Affiliation(s)
- Adam Schultz
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Olubunmi A Olorundami
- Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Ru-Jeng Teng
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Jason Jarzembowski
- Department of Pathology (J.J., S.N.K), Children Hospital of Wisconsin, Milwaukee
| | | | - Suresh N Kumar
- Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke.,Department of Pathology (J.J., S.N.K), Children Hospital of Wisconsin, Milwaukee
| | - Kirkwood Pritchard
- Department of Surgery, Division of Pediatric Surgery (K.P.), Medical College of Wisconsin, Milwaukee, WI
| | - Girija G Konduri
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Adeleye J Afolayan
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| |
Collapse
|
14
|
Narasimhan G, Henderson J, Luong HT, Rajasekaran NS, Qin G, Zhang J, Krishnamurthy P. OBG-like ATPase 1 inhibition attenuates angiotensin II-induced hypertrophic response in human ventricular myocytes via GSK-3beta/beta-catenin signalling. Clin Exp Pharmacol Physiol 2019; 46:743-751. [PMID: 31063653 DOI: 10.1111/1440-1681.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022]
Abstract
Obg-like ATPase 1 (OLA1) that possesses both GTP and ATP hydrolyzing activities has been shown to be involved in translational regulation of cancer cell growth and survival. Also, GSK3β signalling has been implicated in cardiac development and disease. However, the role of OLA1 in pathological cardiac hypertrophy is unknown. We sought to understand the mechanism by which OLA1 regulates GSK3β-β-Catenin signalling and its functional significance in angiotensin-II (ANG II)-induced cardiac hypertrophic response. OLA1 function and its endogenous interaction with GSK3β/β-catenin signalling in cultured human ventricular cardiomyocytes (AC16 cells) and mouse hearts (in vivo) was evaluated with/without ANG II-stimulated hypertrophic response. ANG II administration in mice increases myocardial OLA1 protein expression with a corresponding increase in GSK3β phosphorylation and decrease in β-Catenin phosphorylation. Cultured cardiomyocytes treated with ANG II show endogenous interaction between OLA1 and GSK3β, nuclear accumulation of β-Catenin and significant increase in cell size and expression of hypertrophic marker genes such as atrial natriuretic factor (ANF; NPPA) and β-myosin heavy chain (MYH7). Intriguingly, OLA1 inhibition attenuates the above hypertrophic response in cardiomyocytes. Taken together, our data suggest that OLA1 plays a detrimental role in hypertrophic response via GSK3β/β-catenin signalling. Translation strategies to target OLA1 might potentially limit the underlying molecular derangements leading to left ventricular dysfunction in patients with maladaptive cardiac hypertrophy.
Collapse
Affiliation(s)
- Gayathri Narasimhan
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hien T Luong
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Namakkal Soorapan Rajasekaran
- Division of Molecular & Cellular Pathology, Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gangjian Qin
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianyi Zhang
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Balasingam N, Brandon HE, Ross JA, Wieden HJ, Thakor N. Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF homologs. Biochem Cell Biol 2019; 98:1-11. [PMID: 30742486 DOI: 10.1139/bcb-2018-0353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P-loop NTPases comprise one of the major superfamilies of nucleotide binding proteins, which mediate a variety of cellular processes, such as mRNA translation, signal transduction, cell motility, and growth regulation. In this review, we discuss the structure and function of two members of the ancient Obg-related family of P-loop GTPases: human Obg-like ATPase 1 (hOLA1), and its bacterial/plant homolog, YchF. After a brief discussion of nucleotide binding proteins in general and the classification of the Obg-related family in particular, we discuss the sequence and structural features of YchF and hOLA1. We then explore the various functional roles of hOLA1 in mammalian cells during stress response and cancer progression, and of YchF in bacterial cells. Finally, we directly compare and contrast the structure and function of hOLA1 with YchF before summarizing the future perspectives of hOLA1 research. This review is timely, given the variety of recent studies aimed at understanding the roles of hOLA1 and YchF in such critical processes as cellular-stress response, oncogenesis, and protein synthesis.
Collapse
Affiliation(s)
- Nirujah Balasingam
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Harland E Brandon
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Joseph A Ross
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Nehal Thakor
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
16
|
Bai L, Yu Z, Zhang J, Yuan S, Liao C, Jeyabal PVS, Rubio V, Chen H, Li Y, Shi ZZ. OLA1 contributes to epithelial-mesenchymal transition in lung cancer by modulating the GSK3β/snail/E-cadherin signaling. Oncotarget 2016; 7:10402-13. [PMID: 26863455 PMCID: PMC4891128 DOI: 10.18632/oncotarget.7224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/24/2016] [Indexed: 12/16/2022] Open
Abstract
Obg-like ATPase 1 (OLA1) belongs to the Obg family of P-loop NTPases, and may serve as a "molecular switch" regulating multiple cellular processes. Aberrant expression of OLA1 has been observed in several human malignancies. However, the role of OLA1 in cancer progression remains poorly understood. In this study, we used the Kaplan-Meier plotter search tool to show that increased expression of OLA1 mRNA was significantly associated with shorter overall survival in lung cancer patients. By immunohistochemical analysis we discovered that levels of OLA1 protein in lung cancer tissues were positively correlated with TNM stage and lymph node metastasis, but negatively correlated with the epithelial-mesenchymal transition (EMT) marker E-cadherin. Knockdown of OLA1 in a lung adenocarcinoma cell line rendered the cells more resistant to TGF-β-induced EMT and the accompanied repression of E-cadherin. Furthermore, our results demonstrated that OLA1 is a GSK3β-interacting protein and inhibits GSK3β activity by mediating its Ser9 phosphorylation. During EMT, OLA1 plays an important role in suppressing the GSK3β-mediated degradation of Snail protein, which in turn promotes downregulation of E-cadherin. These data suggest that OLA1 contributes to EMT by modulating the GSK3β/Snail/E-cadherin signaling, and its overexpression is associated with clinical progression and poor survival in lung cancer patients.
Collapse
Affiliation(s)
- Li Bai
- Department of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Translational Imaging, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zubin Yu
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiawei Zhang
- Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Yuan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chen Liao
- Department of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Prince V S Jeyabal
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, Texas, USA
| | - Valentina Rubio
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, Texas, USA
| | - Huarong Chen
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, Texas, USA.,Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zheng-Zheng Shi
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
17
|
Xu D, Song R, Wang G, Jeyabal PVS, Weiskoff AM, Ding K, Shi ZZ. Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop. Oncotarget 2016; 7:3427-39. [PMID: 26655089 PMCID: PMC4823117 DOI: 10.18632/oncotarget.6496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/21/2015] [Indexed: 11/29/2022] Open
Abstract
OLA1 is an Obg family P-loop NTPase that possesses both GTP- and ATP-hydrolyzing activities. Here we report that OLA1 is a GSK3β interacting protein, and through its ATPase activity, inhibits the GSK3β-mediated activation of protein serine/threonine phosphatase 1 (PP1). It is hypothesized that GSK3β phosphorylates inhibitor 2 (I-2) of PP1 at Thr-72 and activates the PP1 · I-2 complex, which in turn dephosphorylates and stimulates GSK3β, thus forming a positive feedback loop. We revealed that the positive feedback loop is normally suppressed by OLA1, and becomes over-activated under OLA1 deficiency, resulting in increased cellular PP1 activity and dephosphorylation of multiple Ser/Thr phosphoproteins, and more strikingly, decreased global protein threonine phosphorylation. Furthermore, using xenograft models of colon cancer (H116) and ovarian cancer (SKOV3), we established a correlation among downregulation of OLA1, over-activation of the positive feedback loop as indicated by under-phosphorylation of I-2, and more aggressive tumor growth. This study provides the first evidence for the existence of a GSK3β-I-2-PP1 positive feedback loop in human cancer cells, and identifies OLA1 as an endogenous suppressor of this signaling motif.
Collapse
Affiliation(s)
- Dong Xu
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Renduo Song
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Guohui Wang
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Prince V S Jeyabal
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Amanda M Weiskoff
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kefeng Ding
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zheng-Zheng Shi
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
18
|
Ho YYW, Evans DM, Montgomery GW, Henders AK, Kemp JP, Timpson NJ, St Pourcain B, Heath AC, Madden PAF, Loesch DZ, McNevin D, Daniel R, Davey-Smith G, Martin NG, Medland SE. Common Genetic Variants Influence Whorls in Fingerprint Patterns. J Invest Dermatol 2016; 136:859-862. [PMID: 27045867 PMCID: PMC4821365 DOI: 10.1016/j.jid.2015.10.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yvonne Y W Ho
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Psychology, University of Queensland, Brisbane, Australia.
| | - David M Evans
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.
| | | | | | - John P Kemp
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Beate St Pourcain
- School of Social & Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Andrew C Heath
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - Danuta Z Loesch
- Department of Psychology, La Trobe University, Melbourne, Australia
| | - Dennis McNevin
- National Centre for Forensic Studies, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Runa Daniel
- Office of the Chief Forensic Scientist, Forensic Services Department, Victoria Police, Australia
| | - George Davey-Smith
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
19
|
Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett 2016; 387:95-105. [PMID: 27037062 DOI: 10.1016/j.canlet.2016.03.042] [Citation(s) in RCA: 585] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
Extensive research over the past half a century indicates that reactive oxygen species (ROS) play an important role in cancer. Although low levels of ROS can be beneficial, excessive accumulation can promote cancer. One characteristic of cancer cells that distinguishes them from normal cells is their ability to produce increased numbers of ROS and their increased dependence on an antioxidant defense system. ROS are produced as a byproduct intracellularly by mitochondria and other cellular elements and exogenously by pollutants, tobacco, smoke, drugs, xenobiotics, and radiation. ROS modulate various cell signaling pathways, which are primarily mediated through the transcription factors NF-κB and STAT3, hypoxia-inducible factor-1α, kinases, growth factors, cytokines and other proteins, and enzymes; these pathways have been linked to cellular transformation, inflammation, tumor survival, proliferation, invasion, angiogenesis, and metastasis of cancer. ROS are also associated with epigenetic changes in genes, which is helpful in diagnosing diseases. This review considers the role of ROS in the various stages of cancer development. Finally, we provide evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
20
|
Martínez-Baeza E, Rojas E, Valverde M. Metal mixture (As-Cd-Pb)-induced cell transformation is modulated by OLA1. Mutagenesis 2016; 31:463-73. [PMID: 26984302 DOI: 10.1093/mutage/gew010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2 3H2O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N-Acetyl-l-cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation.
Collapse
Affiliation(s)
- Elia Martínez-Baeza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, DF, México
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, DF, México
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, DF, México
| |
Collapse
|
21
|
Hannemann L, Suppanz I, Ba Q, MacInnes K, Drepper F, Warscheid B, Koch HG. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Antioxid Redox Signal 2016; 24:141-56. [PMID: 26160547 PMCID: PMC4742990 DOI: 10.1089/ars.2015.6272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. RESULTS Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. INNOVATION YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. CONCLUSION Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.
Collapse
Affiliation(s)
- Liya Hannemann
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Ida Suppanz
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Qiaorui Ba
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Katherine MacInnes
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Friedel Drepper
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Bettina Warscheid
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Hans-Georg Koch
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
22
|
Rosler KS, Mercier E, Andrews IC, Wieden HJ. Histidine 114 Is Critical for ATP Hydrolysis by the Universally Conserved ATPase YchF. J Biol Chem 2015; 290:18650-61. [PMID: 26018081 DOI: 10.1074/jbc.m114.598227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 11/06/2022] Open
Abstract
GTPases perform a wide range of functions, ranging from protein synthesis to cell signaling. Of all known GTPases, only eight are conserved across all three domains of life. YchF is one of these eight universally conserved GTPases; however, its cellular function and enzymatic properties are poorly understood. YchF differs from the classical GTPases in that it has a higher affinity for ATP than for GTP and is a functional ATPase. As a hydrophobic amino acid-substituted ATPase, YchF does not possess the canonical catalytic Gln required for nucleotide hydrolysis. To elucidate the catalytic mechanism of ATP hydrolysis by YchF, we have taken a two-pronged approach combining classical biochemical and in silico techniques. The use of molecular dynamics simulations allowed us to complement our biochemical findings with information about the structural dynamics of YchF. We have thereby identified the highly conserved His-114 as critical for the ATPase activity of YchF from Escherichia coli. His-114 is located in a flexible loop of the G-domain, which undergoes nucleotide-dependent conformational changes. The use of a catalytic His is also observed in the hydrophobic amino acid-substituted GTPase RbgA and is an identifier of the translational GTPase family.
Collapse
Affiliation(s)
- Kirsten S Rosler
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Evan Mercier
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ian C Andrews
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
23
|
Mustafa EH, Mahmoud HT, Al-Hudhud MY, Abdalla MY, Ahmad IM, Yasin SR, Elkarmi AZ, Tahtamouni LH. 2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells. Asian Pac J Cancer Prev 2015; 16:3213-22. [DOI: 10.7314/apjcp.2015.16.8.3213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Jeyabal PVS, Rubio V, Chen H, Zhang J, Shi ZZ. Regulation of cell-matrix adhesion by OLA1, the Obg-like ATPase 1. Biochem Biophys Res Commun 2014; 444:568-74. [PMID: 24486488 DOI: 10.1016/j.bbrc.2014.01.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/30/2023]
Abstract
Attachment of cells to the extracellular matrix induces clustering of membrane receptor integrins which in turn triggers the formation of focal adhesions (FAs). The adaptor/scaffold proteins in FAs provide linkage to actin cytoskeleton, whereas focal adhesion kinase (FAK) and other FA-associated kinases and phosphatases transduce integrin-mediated signaling cascades, promoting actin polymerization and progression of cell spreading. In this study, we explored the role of OLA1, a newly identified member of Obg-like ATPases, in regulating cell adhesion processes. We showed that in multiple human cell lines RNAi-mediated downregulation of OLA1 significantly accelerated cell adhesion and spreading, and conversely overexpression of OLA1 by gene transfection resulted in delayed cell adhesion and spreading. We further found that OLA1-deficient cells had elevated levels of FAK protein and decreased Ser3 phosphorylation of cofilin, an actin-binding protein and key regulator of actin filament dynamics, while OLA1-overexpressing cells exhibited the opposite molecular alterations in FAK and cofilin. These findings suggest that OLA1 plays an important negative role in cell adhesion and spreading, in part through the regulation of FAK expression and cofilin phosphorylation, and manipulation of OLA1 may lead to significant changes in cell adhesion and the associated phenotypes.
Collapse
Affiliation(s)
- Prince V S Jeyabal
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Valentina Rubio
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Huarong Chen
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jiawei Zhang
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zheng-Zheng Shi
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Matsuzawa A, Kanno SI, Nakayama M, Mochiduki H, Wei L, Shimaoka T, Furukawa Y, Kato K, Shibata S, Yasui A, Ishioka C, Chiba N. The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. Mol Cell 2013; 53:101-14. [PMID: 24289923 DOI: 10.1016/j.molcel.2013.10.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/03/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023]
Abstract
The breast and ovarian cancer-specific tumor suppressor BRCA1, along with its heterodimer partner BRCA1-associated RING domain protein (BARD1), plays important roles in DNA repair, centrosome regulation, and transcription. To explore further functions of BRCA1/BARD1, we performed mass spectrometry analysis and identified Obg-like ATPase 1 (OLA1) as a protein that interacts with the carboxy-terminal region of BARD1. OLA1 directly bound to the amino-terminal region of BRCA1 and γ-tubulin. OLA1 localized to centrosomes in interphase and to the spindle pole in mitotic phase, and its knockdown resulted in centrosome amplification and the activation of microtubule aster formation. OLA1 with a mutation observed in breast cancer cell line, E168Q, failed to bind BRCA1 and rescue the OLA1 knockdown-induced centrosome amplification. BRCA1 variant I42V also abrogated the binding of BRCA1 to OLA1. These findings suggest that OLA1 plays an important role in centrosome regulation together with BRCA1.
Collapse
Affiliation(s)
- Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hironori Mochiduki
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Leizhen Wei
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tatsuro Shimaoka
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
| | - Yumiko Furukawa
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kei Kato
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shun Shibata
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Natsuko Chiba
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
26
|
Ríos-Arrabal S, Artacho-Cordón F, León J, Román-Marinetto E, del Mar Salinas-Asensio M, Calvente I, Núñez MI. Involvement of free radicals in breast cancer. SPRINGERPLUS 2013; 2:404. [PMID: 24024092 PMCID: PMC3765596 DOI: 10.1186/2193-1801-2-404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
Researchers have recently shown an increased interest in free radicals and their role in the tumor microenvironment. Free radicals are molecules with high instability and reactivity due to the presence of an odd number of electrons in the outermost orbit of their atoms. Free radicals include reactive oxygen and nitrogen species, which are key players in the initiation and progression of tumor cells and enhance their metastatic potential. In fact, they are now considered a hallmark of cancer. However, both reactive species may contribute to improve the outcomes of radiotherapy in cancer patients. Besides, high levels of reactive oxygen species may be indicators of genotoxic damage in non-irradiated normal tissues. The purpose of this article is to review recent research on free radicals and carcinogenesis in order to understand the pathways that contribute to tumor malignancy. This review outlines the involvement of free radicals in relevant cellular events, including their effects on genetic instability through (growth factors and tumor suppressor genes, their enhancement of mitogenic signals, and their participation in cell remodeling, proliferation, senescence, apoptosis, and autophagy processes; the possible relationship between free radicals and inflammation is also explored. This knowledge is crucial for evaluating the relevance of free radicals as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | - Francisco Artacho-Cordón
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
- />Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Josefa León
- />Ciber de Enfermedades Hepáticas y Digestivas CIBERehd, Granada, Spain
| | - Elisa Román-Marinetto
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | | | - Irene Calvente
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | - Maria Isabel Núñez
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
- />Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- />Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Av. Conocimiento, s/n, 18100 Armilla Granada, Spain
| |
Collapse
|
27
|
Kizilkaya K, Tait RG, Garrick DJ, Fernando RL, Reecy JM. Genome-wide association study of infectious bovine keratoconjunctivitis in Angus cattle. BMC Genet 2013; 14:23. [PMID: 23530766 PMCID: PMC3673868 DOI: 10.1186/1471-2156-14-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious Bovine Keratoconjunctivitis (IBK) in beef cattle, commonly known as pinkeye, is a bacterial disease caused by Moraxellabovis. IBK is characterized by excessive tearing and ulceration of the cornea. Perforation of the cornea may also occur in severe cases. IBK is considered the most important ocular disease in cattle production, due to the decreased growth performance of infected individuals and its subsequent economic effects. IBK is an economically important, lowly heritable categorical disease trait. Mass selection of unaffected animals has not been successful at reducing disease incidence. Genome-wide studies can determine chromosomal regions associated with IBK susceptibility. The objective of the study was to detect single-nucleotide polymorphism (SNP) markers in linkage disequilibrium (LD) with genetic variants associated with IBK in American Angus cattle. RESULTS The proportion of phenotypic variance explained by markers was 0.06 in the whole genome analysis of IBK incidence classified as two, three or nine categories. Whole-genome analysis using any categorisation of (two, three or nine) IBK scores showed that locations on chromosomes 2, 12, 13 and 21 were associated with IBK disease. The genomic locations on chromosomes 13 and 21 overlap with QTLs associated with Bovine spongiform encephalopathy, clinical mastitis or somatic cell count. CONCLUSIONS Results of these genome-wide analyses indicated that if the underlying genetic factors confer not only IBK susceptibility but also IBK severity, treating IBK phenotypes as a two-categorical trait can cause information loss in the genome-wide analysis. These results help our overall understanding of the genetics of IBK and have the potential to provide information for future use in breeding schemes.
Collapse
Affiliation(s)
- Kadir Kizilkaya
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
- Department of Animal Science, Adnan Menderes University, Aydin, 09100 Turkey
| | - Richard G Tait
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Dorian J Garrick
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Rohan L Fernando
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
28
|
Mao RF, Rubio V, Chen H, Bai L, Mansour OC, Shi ZZ. OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death Dis 2013; 4:e491. [PMID: 23412384 PMCID: PMC3734832 DOI: 10.1038/cddis.2013.23] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heat-shock response is an evolutionarily conserved cellular defense mechanism against environmental stresses, characterized by the rapid synthesis of heat-shock proteins (HSPs). HSP70, a highly inducible molecular chaperone, assists in refolding or clearance of damaged proteins, thereby having a central role in maintaining intracellular homeostasis and thermotolerance. To date, induction of HSP70 expression has been described extensively at the transcriptional level. However, post-translational regulation of HSP70, such as protein stability, is only partially understood. In this study, we investigated the role of OLA1 (Obg-like ATPase 1), a previously uncharacterized cytosolic ATPase, in regulating the turnover of HSP70. Downregulation of OLA1 in mammalian cells by either RNAi or targeted gene disruption results in reduced steady-state levels of HSP70, impaired HSP70 induction by heat, and functionally, increased cellular sensitivity to heat shock. Conversely, overexpression of OLA1 correlates with elevated HSP70 protein levels and improved thermal resistance. Protein–protein interaction assays demonstrated that binding of OLA1 to the HSP70 carboxyl terminus variable domain hinders the recruitment of CHIP (C-terminus of Hsp70-binding protein), an E3 ubiquitin ligase for HSP70, and thus prevents HSP70 from the CHIP-mediated ubiquitination. These findings suggest a novel molecular mechanism by which OLA1 stabilizes HSP70, leading to upregulation of HSP70 as well as increased survival during heat shock.
Collapse
Affiliation(s)
- R-F Mao
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wenk M, Ba Q, Erichsen V, MacInnes K, Wiese H, Warscheid B, Koch HG. A universally conserved ATPase regulates the oxidative stress response in Escherichia coli. J Biol Chem 2012; 287:43585-98. [PMID: 23139412 DOI: 10.1074/jbc.m112.413070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YchF is an evolutionarily conserved ATPase of unknown function. In humans, the YchF homologue hOla1 appears to influence cell proliferation and was found to be up-regulated in many tumors. A possible involvement in regulating the oxidative stress response was also suggested, but details on the underlying mechanism are lacking. For gaining insight into YchF function, we used Escherichia coli as a model organism and found that YchF overexpression resulted in H(2)O(2) hypersensitivity. This was not caused by transcriptional or translational down-regulation of H(2)O(2)-scavenging enzymes. Instead, we observed YchF-dependent inhibition of catalase activity and a direct interaction with the major E. coli catalase KatG. KatG inhibition was dependent on the ATPase activity of YchF and was regulated by post-translational modifications, most likely including an H(2)O(2)-dependent dephosphorylation. We furthermore showed that YchF expression is repressed by the transcription factor OxyR and further post-translationally modified in response to H(2)O(2). In summary, our data show that YchF functions as a novel negative regulator of the oxidative stress response in E. coli. Considering the available data on hOla1, YchF/Ola1 most likely execute similar functions in bacteria and humans, and their up-regulation inhibits the ability of the cells to scavenge damaging reactive oxygen species.
Collapse
Affiliation(s)
- Meike Wenk
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Stefan-Meier-Strasse 17, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Becker M, Gzyl KE, Altamirano AM, Vuong A, Urbahn K, Wieden HJ. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF. RNA Biol 2012; 9:1288-301. [PMID: 22995830 PMCID: PMC3583859 DOI: 10.4161/rna.22131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
YchF is one of two universally conserved GTPases with unknown cellular function. As a first step toward elucidating YchF's cellular role, we performed a detailed biochemical characterization of the protein from Escherichia coli. Our data from fluorescence titrations not only confirmed the surprising finding that YchFE.coli binds adenine nucleotides more efficiently than guanine nucleotides, but also provides the first evidence suggesting that YchF assumes two distinct conformational states (ATP- and ADP-bound) consistent with the functional cycle of a typical GTPase. Based on an in vivo pull-down experiment using a His-tagged variant of YchF from E. coli (YchFE.coli), we were able to isolate a megadalton complex containing the 70S ribosome. Based on this finding, we report the successful reconstitution of a YchF•70S complex in vitro, revealing an affinity (KD) of the YchFE.coli•ADPNP complex for 70S ribosomes of 3 μM. The in vitro reconstitution data also suggests that the identity of the nucleotide-bound state of YchF (ADP or ATP) modulates its affinity for 70S ribosomes. A detailed Michaelis-Menten analysis of YchF's catalytic activity in the presence and the absence of the 70S ribosome and its subunits revealed for the first time that the 70S ribosome is able to stimulate YchF's ATPase activity (~10-fold), confirming the ribosome as part of the functional cycle of YchF. Our findings taken together with previously reported data for the human homolog of YchF (hOLA1) indicate a high level of evolutionary conservation in the enzymatic properties of YchF and suggest that the ribosome is the main functional partner of YchF not only in bacteria.
Collapse
Affiliation(s)
- Marion Becker
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Katherine E. Gzyl
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Alvin M. Altamirano
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Anthony Vuong
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Kirstin Urbahn
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
- Alberta RNA Research and Training Institute; University of Lethbridge; Lethbridge, AB Canada
| |
Collapse
|
31
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
32
|
Maiti AK. Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int J Cancer 2011; 130:1-9. [DOI: 10.1002/ijc.26306] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
33
|
Asperger A, Renner C, Menzel M, Gebhardt R, Meixensberger J, Gaunitz F. Identification of Factors Involved in the Anti-Tumor Activity of Carnosine on Glioblastomas Using a Proteomics Approach. Cancer Invest 2011; 29:272-81. [DOI: 10.3109/07357907.2010.550666] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Rubio V, Zhang J, Valverde M, Rojas E, Shi ZZ. Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. Toxicol In Vitro 2010; 25:521-9. [PMID: 21059386 DOI: 10.1016/j.tiv.2010.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 01/10/2023]
Abstract
Benzene is a well-established human carcinogen. Benzene metabolites hydroquinone (HQ) and benzoquinone (BQ) are highly reactive molecules capable of producing reactive oxygen species and causing oxidative stress. In this study, we investigated the role of the Nrf2, a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes, in defense against HQ- and BQ-induced cytotoxicity in cultured human lung epithelial cells (Beas-2B). When the cells were exposed to HQ or BQ the activity of an ARE reporter was induced in a dose-dependent manner, meanwhile Nrf2 protein levels were elevated and accumulated in the nucleus. Increased expression of well-known Nrf2-dependent proteins including NQO1, GCLM, GSS and HMOX was also observed in the HQ/BQ-treated cells. Moreover, transient overexpression of Nrf2 conferred protection against HQ- and BQ-induced cell death, whereas knockdown of Nrf2 by small interfering RNA resulted in increased apoptosis. We also found that the increased susceptibility of Nrf2-knockdown cells to HQ and BQ was associated with reduced glutathione levels and loss of inducibility of ARE-driven genes, suggesting that deficiency of Nrf2 impairs cellular redox capacity to counteract oxidative damage. Altogether, these results suggest that Nrf2-ARE pathway is essential for protection against HQ- and BQ-induced toxicity.
Collapse
Affiliation(s)
- Valentina Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | | | |
Collapse
|