1
|
Li Y, Guo J, Yu H, Zhou J, Chu X, Hou B, Ge J, Li T, Duan S, Xu H, Yang X. The effect of olmesartan on aortic intimal thickening after balloon injury through Apelin/APJ. Cardiovasc Pathol 2020; 49:107230. [PMID: 32585603 DOI: 10.1016/j.carpath.2020.107230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Restenosis is the main complication after percutaneous coronary intervention. The proliferation of new intima contributes to the process. In this study, we aimed to explore the effect of olmesartan on intimal thickening after balloon injury and possible mechanism. METHODS Aortic endothelial denudation model was made by a 2F balloon catheter. Thirty-six rats were randomly allocated into three groups: Control (n = 12) Surgery (n = 12, received vascular balloon injury) and Olmesartan (n = 12, received 3 mg.kg-1.d-1olmesartan after injury). Fourteen and 28 days after injury, HE staining was used to assess the aortic endothelial injury. Radioimmunological method was used to examine the level of angiotensin II (Ang II). Western blotting and reverse transcription polymerse chain reaction (RT-PCR) were employed to detect the protein and mRNA level of Apelin/APJ. RESULTS After vascular balloon injury, the proliferation of vascular smooth muscle cells and the intimal thickening were increased. The mRNA and protein level of Ang II, AT1, Apelin and APJ mRNA were promoted by vascular balloon injury. Olmesartan decreased the proliferation of vascular smooth muscle cells and the intimal thickening. Olmesartan decreased the expression of Ang II and AT1, but further increased the expression of Apelin and APJ. Balloon injury also induced the activation of Extracellular signal-regulated kinase (ERK) signaling and olmesartan decreased the effect. CONCLUSION Olmesartan inhibits the intimal thickening through activating Apelin/APJ and inhibiting AngII-AT1 and ERK pathway.
Collapse
Affiliation(s)
- Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China.
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Jingwei Zhou
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Bo Hou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Junhua Ge
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Tingting Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Shuo Duan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Hui Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| |
Collapse
|
2
|
Rouchaud A, Johnson C, Thielen E, Schroeder D, Ding YH, Dai D, Brinjikji W, Cebral J, Kallmes DF, Kadirvel R. Differential Gene Expression in Coiled versus Flow-Diverter-Treated Aneurysms: RNA Sequencing Analysis in a Rabbit Aneurysm Model. AJNR Am J Neuroradiol 2015; 37:1114-21. [PMID: 26721773 DOI: 10.3174/ajnr.a4648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE The biologic mechanisms leading to aneurysm healing or rare complications such as delayed aneurysm ruptures after flow-diverter placement remain poorly understood. We used RNA sequencing following implantation of coils or flow diverters in elastase aneurysms in rabbits to identify genes and pathways of potential interest. MATERIALS AND METHODS Aneurysms were treated with coils (n = 5) or flow diverters (n = 4) or were left untreated for controls (n = 6). Messenger RNA was isolated from the aneurysms at 4 weeks following treatment. RNA samples were processed by using RNA-sequencing technology and were analyzed by using the Ingenuity Pathway Analysis tool. RESULTS With RNA sequencing for coiled versus untreated aneurysms, 464/9990 genes (4.6%) were differentially expressed (58 down-regulated, 406 up-regulated). When we compared flow-diverter versus untreated aneurysms, 177/10,041 (1.8%) genes were differentially expressed (8 down-regulated, 169 up-regulated). When we compared flow-diverter versus coiled aneurysms, 13/9982 (0.13%) genes were differentially expressed (8 down-regulated, 5 up-regulated). Keratin 8 was overexpressed in flow diverters versus coils. This molecule may potentially play a critical role in delayed ruptures due to plasmin production. We identified overregulation of apelin in flow diverters, supporting the preponderance of endothelialization, whereas we found overexpression of molecules implicated in wound healing (dectin 1 and hedgehog interacting protein) for coiled aneurysms. Furthermore, we identified metallopeptidases 1, 12, and 13 as overexpressed in coiled versus untreated aneurysms. CONCLUSIONS We observed different physiopathologic responses after endovascular treatment with various devices. Flow diverters promote endothelialization but express molecules that could potentially explain the rare delayed ruptures. Coils promote wound healing and express genes potentially implicated in the recurrence of coiled aneurysms.
Collapse
Affiliation(s)
- A Rouchaud
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - C Johnson
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - E Thielen
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - D Schroeder
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - Y-H Ding
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - D Dai
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - W Brinjikji
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.) Department of Radiology (W.B., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - J Cebral
- Department of Bioengineering (J.C.), George Mason University, Fairfax, Virginia
| | - D F Kallmes
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.) Department of Radiology (W.B., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - R Kadirvel
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| |
Collapse
|