1
|
Ashkin EL, Tang YJ, Xu H, Hung KL, Belk JA, Cai H, Lopez SS, Dolcen DN, Hebert JD, Li R, Ruiz PA, Keal T, Andrejka L, Chang HY, Petrov DA, Dixon JR, Xu Z, Winslow MM. A STAG2-PAXIP1/PAGR1 axis suppresses lung tumorigenesis. J Exp Med 2025; 222:e20240765. [PMID: 39652422 PMCID: PMC11627241 DOI: 10.1084/jem.20240765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The cohesin complex is a critical regulator of gene expression. STAG2 is the most frequently mutated cohesin subunit across several cancer types and is a key tumor suppressor in lung cancer. Here, we coupled somatic CRISPR-Cas9 genome editing and tumor barcoding with an autochthonous oncogenic KRAS-driven lung cancer model and showed that STAG2 is uniquely tumor-suppressive among all core and auxiliary cohesin components. The heterodimeric complex components PAXIP1 and PAGR1 have highly correlated effects with STAG2 in human lung cancer cell lines, are tumor suppressors in vivo, and are epistatic to STAG2 in oncogenic KRAS-driven lung tumorigenesis in vivo. STAG2 inactivation elicits changes in gene expression, chromatin accessibility, and 3D genome conformation that impact the cancer cell state. Gene expression and chromatin accessibility similarities between STAG2- and PAXIP1-deficient neoplastic cells further relate STAG2-cohesin to PAXIP1/PAGR1. These findings reveal a STAG2-PAXIP1/PAGR1 tumor-suppressive axis and uncover novel PAXIP1-dependent and PAXIP1-independent STAG2-cohesin-mediated mechanisms of lung tumor suppression.
Collapse
Affiliation(s)
- Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuning J. Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Haiqing Xu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - King L. Hung
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven S. Lopez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Nesli Dolcen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D. Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Paloma A. Ruiz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tula Keal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A. Petrov
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhichao Xu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monte M. Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
La'ah AS, Tsai P, Yarmishyn AA, Ching L, Chen C, Chien Y, Chen JC, Tsai M, Chen Y, Ma C, Hsu P, Luo Y, Chen Y, Chiou G, Lu K, Lin W, Chou Y, Wang M, Chiou S. Neutrophils Recruited by NKX2-1 Suppression via Activation of CXCLs/CXCR2 Axis Promote Lung Adenocarcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400370. [PMID: 39113226 PMCID: PMC11481344 DOI: 10.1002/advs.202400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/14/2024] [Indexed: 10/17/2024]
Abstract
NK2 Homeobox 1 (NKX2-1) is a well-characterized pathological marker that delineates lung adenocarcinoma (LUAD) progression. The advancement of LUAD is influenced by the immune tumor microenvironment through paracrine signaling. However, the involvement of NKX2-1 in modeling the tumor immune microenvironment is still unclear. Here, the downregulation of NKX2-1 is observed in high-grade LUAD. Meanwhile, single-cell RNA sequencing and Visium in situ capturing profiling revealed the recruitment and infiltration of neutrophils in orthotopic syngeneic tumors exhibiting strong cell-cell communication through the activation of CXCLs/CXCR2 signaling. The depletion of NKX2-1 triggered the expression and secretion of CXCL1, CXCL2, CXCL3, and CXCL5 in LUAD cells. Chemokine secretion is analyzed by chemokine array and validated by qRT-PCR. ATAC-seq revealed the restrictive regulation of NKX2-1 on the promoters of CXCL1, CXCL2, and CXCL5 genes. This phenomenon led to increased tumor growth, and conversely, tumor growth decreased when inhibited by the CXCR2 antagonist SB225002. This study unveils how NKX2-1 modulates the infiltration of tumor-promoting neutrophils by inhibiting CXCLs/CXCR2-dependent mechanisms. Hence, targeting CXCR2 in NKX2-1-low tumors is a potential antitumor therapy that may improve LUAD patient outcomes.
Collapse
Affiliation(s)
- Anita S La'ah
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Ping‐Hsing Tsai
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | | | - Lo‐Jei Ching
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | - Chih‐Ying Chen
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Yueh Chien
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | - Jerry Chieh‐Yu Chen
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
| | - Ming‐Long Tsai
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Yi‐Chen Chen
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Chun Ma
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Po‐Kuei Hsu
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Department of SurgeryTaipei Veterans General HospitalTaipei112Taiwan
| | - Yung‐Hung Luo
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Department of Chest MedicineTaipei Veterans General HospitalTaipei112Taiwan
| | - Yuh‐Min Chen
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Department of Chest MedicineTaipei Veterans General HospitalTaipei112Taiwan
- Taipei Cancer CenterTaipei Medical UniversityTaipei110Taiwan
| | - Guang‐Yuh Chiou
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinChu300093Taiwan
| | - Kai‐Hsi Lu
- Department of Medical Research and EducationCheng‐Hsin General HospitalTaipei112Taiwan
| | - Wen‐Chang Lin
- Institute of Biomedical SciencesAcademia SinicaTaipei115Taiwan
| | - Yu‐Ting Chou
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Mong‐Lien Wang
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of Food Safety and Health Risk AssessmentSchool of Pharmaceutical SciencesNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | - Shih‐Hwa Chiou
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Genomic Research CenterAcademia SinicaTaipei115Taiwan
| |
Collapse
|
3
|
Lin H, Wang J, Shi Q, Wu M. Significance of NKX2-1 as a biomarker for clinical prognosis, immune infiltration, and drug therapy in lung squamous cell carcinoma. PeerJ 2024; 12:e17338. [PMID: 38708353 PMCID: PMC11069361 DOI: 10.7717/peerj.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Background This study was performed to determine the biological processes in which NKX2-1 is involved and thus its role in the development of lung squamous cell carcinoma (LUSC) toward improving the prognosis and treatment of LUSC. Methods Raw RNA sequencing (RNA-seq) data of LUSC from The Cancer Genome Atlas (TCGA) were used in bioinformatics analysis to characterize NKX2-1 expression levels in tumor and normal tissues. Survival analysis of Kaplan-Meier curve, the time-dependent receiver operating characteristic (ROC) curve, and a nomogram were used to analyze the prognosis value of NKX2-1 for LUSC in terms of overall survival (OS) and progression-free survival (PFS). Then, differentially expressed genes (DEGs) were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were used to clarify the biological mechanisms potentially involved in the development of LUSC. Moreover, the correlation between the NKX2-1 expression level and tumor mutation burden (TMB), tumor microenvironment (TME), and immune cell infiltration revealed that NKX2-1 participates in the development of LUSC. Finally, we studied the effects of NKX2-1 on drug therapy. To validate the protein and gene expression levels of NKX2-1 in LUSC, we employed immunohistochemistry(IHC) datasets, The Gene Expression Omnibus (GEO) database, and qRT-PCR analysis. Results NKX2-1 expression levels were significantly lower in LUSC than in normal lung tissue. It significantly differed in gender, stage and N classification. The survival analysis revealed that high expression of NKX2-1 had shorter OS and PFS in LUSC. The multivariate Cox regression hazard model showed the NKX2-1 expression as an independent prognostic factor. Then, the nomogram predicted LUSC prognosis. There are 51 upregulated DEGs and 49 downregulated DEGs in the NKX2-1 high-level groups. GO, KEGG and GSEA analysis revealed that DEGs were enriched in cell cycle and DNA replication.The TME results show that NKX2-1 expression was positively associated with mast cells resting, neutrophils, monocytes, T cells CD4 memory resting, and M2 macrophages but negatively associated with M1 macrophages. The TMB correlated negatively with NKX2-1 expression. The pharmacotherapy had great sensitivity in the NKX2-1 low-level group, the immunotherapy is no significant difference in the NKX2-1 low-level and high-level groups. The analysis of GEO data demonstrated concurrence with TCGA results. IHC revealed NKX2-1 protein expression in tumor tissues of both LUAD and LUSC. Meanwhile qRT-PCR analysis indicated a significantly lower NKX2-1 expression level in LUSC compared to LUAD. These qRT-PCR findings were consistent with co-expression analysis of NKX2-1. Conclusion We conclude that NKX2-1 is a potential biomarker for prognosis and treatment LUSC. A new insights of NKX2-1 in LUSC is still needed further research.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Marcoux P, Hwang JW, Desterke C, Imeri J, Bennaceur-Griscelli A, Turhan AG. Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cells 2023; 12:2847. [PMID: 38132167 PMCID: PMC10742233 DOI: 10.3390/cells12242847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
REarranged during Transfection (RET) oncogenic rearrangements can occur in 1-2% of lung adenocarcinomas. While RET-driven NSCLC models have been developed using various approaches, no model based on patient-derived induced pluripotent stem cells (iPSCs) has yet been described. Patient-derived iPSCs hold great promise for disease modeling and drug screening. However, generating iPSCs with specific oncogenic drivers, like RET rearrangements, presents challenges due to reprogramming efficiency and genotypic variability within tumors. To address this issue, we aimed to generate lung progenitor cells (LPCs) from patient-derived iPSCs carrying the mutation RETC634Y, commonly associated with medullary thyroid carcinoma. Additionally, we established a RETC634Y knock-in iPSC model to validate the effect of this oncogenic mutation during LPC differentiation. We successfully generated LPCs from RETC634Y iPSCs using a 16-day protocol and detected an overexpression of cancer-associated markers as compared to control iPSCs. Transcriptomic analysis revealed a distinct signature of NSCLC tumor repression, suggesting a lung multilineage lung dedifferentiation, along with an upregulated signature associated with RETC634Y mutation, potentially linked to poor NSCLC prognosis. These findings were validated using the RETC634Y knock-in iPSC model, highlighting key cancerous targets such as PROM2 and C1QTNF6, known to be associated with poor prognostic outcomes. Furthermore, the LPCs derived from RETC634Y iPSCs exhibited a positive response to the RET inhibitor pralsetinib, evidenced by the downregulation of the cancer markers. This study provides a novel patient-derived off-the-shelf iPSC model of RET-driven NSCLC, paving the way for exploring the molecular mechanisms involved in RET-driven NSCLC to study disease progression and to uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Paul Marcoux
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Jin Wook Hwang
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Christophe Desterke
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Jusuf Imeri
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
- APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre, 94270 Le Kremlin Bicetre, France
- Center for IPSC Therapies, CITHERA, INSERM UMS-45, Genopole Campus, 91100 Evry, France
- APHP Paris Saclay, Department of Hematology, Hôpital Paul Brousse, 94800 Villejuif, France
| | - Ali G. Turhan
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
- APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre, 94270 Le Kremlin Bicetre, France
- Center for IPSC Therapies, CITHERA, INSERM UMS-45, Genopole Campus, 91100 Evry, France
- APHP Paris Saclay, Department of Hematology, Hôpital Paul Brousse, 94800 Villejuif, France
| |
Collapse
|
5
|
Sun J, Hu JR, Liu CF, Li Y, Wang W, Fu R, Guo M, Wang HL, Pang M. ANKRD49 promotes the metastasis of NSCLC via activating JNK-ATF2/c-Jun-MMP-2/9 axis. BMC Cancer 2023; 23:1108. [PMID: 37964204 PMCID: PMC10644579 DOI: 10.1186/s12885-023-11612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Ankyrin repeat domain 49 (ANKRD49) has been found to be highly expressed in multiple cancer including lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). However, the function of ANKRD49 in the pathogenesis of NSCLC still remains elusive. Previously, ANKRD49 has been demonstrated to promote the invasion and metastasis of A549 cells, a LUAD cell line, via activating the p38-ATF-2-MMP2/MMP9 pathways. Considering the heterogeneity of tumor cells, the function and mechanism of ANKRD49 in NSCLC need more NSCLC-originated cells to clarify. METHODS Real-time qPCR was employed to test ANKRD49 expression levels in nine pairs of fresh NSCLC tissues and the corresponding adjacent normal tissues. The function of ANKRD49 was investigated using overexpression and RNA interference assays in lung adenocarcinoma cell line (NCI-H1299) and lung squamous carcinoma cell line (NCI-H1703) through gelatin zymography, cell counting kit-8, colony formation, wound healing, migration and invasion assays mmunoprecipitation was performed to in vitro. Immunoprecipitation was performed to test the interaction of c-Jun and ATF2. Chromatin immunoprecipitation was conducted to assess the transcriptional regulation of ATF2/c-Jun on MMP-2/9. Moreover, the tumorigenicity of ANKRD49 was evaluated in nude mice models and the involved signal molecular was also measured by immunohistochemical method. RESULTS We found that the levels of ANKRD49 in cancerous tissues were higher than those in adjacent normal tissues. in vitro assay showed that ANKRD49 promoted the migration and invasion of NCI-H1299 and NCI-H1703 cells via enhancing the levels of MMP-2 and MMP-9. Furthermore, ANKRD49 elevated phosphorylation of JNK and then activated c-Jun and ATF2 which interact in nucleus to promote the binding of ATF2:c-Jun with the promoter MMP-2 or MMP-9. In vivo assay showed that ANKRD49 promoted lung metastasis of injected-NSCLC cells and the high metastatic rate was positively correlated with the high expression of ANKRD49, MMP-2, MMP-9, p-JNK, p-c-Jun and p-ATF2. CONCLUSION The present study indicated that ANKRD49 accelerated the invasion and metastasis of NSCLC cells via JNK-mediated transcription activation of c-Jun and ATF2 which regulated the expression of MMP-2/MMP-9. The molecular mechanisms of ANKRD49's function is different from those found in A549 cells. The current study is a supplement and improvement to the previous research.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
- Department of Laboratorial Medicine, Changzhi Traditional Chinese Medicine Hospital, Changzhi, 046000, China
| | - Jin-Rui Hu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Chao-Feng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Department of Respiratory Medicine 1, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Wei Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Rong Fu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Min Guo
- Laboratory of Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China.
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China.
- Department of Pulmonary and Critical Care Medicine, the First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
6
|
Eckelt K, Hinterreiter A, Adelberger P, Walchshofer C, Dhanoa V, Humer C, Heckmann M, Steinparz C, Streit M. Visual Exploration of Relationships and Structure in Low-Dimensional Embeddings. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:3312-3326. [PMID: 35254984 DOI: 10.1109/tvcg.2022.3156760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups are accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.
Collapse
|
7
|
Li MK, Pang SC, Yan B. [Association of ventricular septal defect with rare variations of the HAND2 gene]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:388-393. [PMID: 37073844 PMCID: PMC10120330 DOI: 10.7499/j.issn.1008-8830.2212057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVES To study the association of ventricular septal defect (VSD) with rare variations in the promoter region of HAND2 gene, as well as related molecular mechanisms. METHODS Blood samples were collected from 349 children with VSD and 345 healthy controls. The target fragments were amplified by polymerase chain reaction and sequenced to identify the rare variation sites in the promoter region of the HAND2 gene. Dual-luciferase reporter assay was used to perform a functional analysis of the variation sites. Electrophoretic mobility shift assay (EMSA) was used to investigate related molecular mechanisms. TRANSFAC and JASPAR databases were used to predict transcription factors. RESULTS Sequencing revealed that three variation sites (g.173530852A>G, g.173531173A>G, and g.173531213C>G) were only observed in the promoter region of the HAND2 gene in 10 children with VSD, among whom 4 children had only one variation site. The dual-luciferase reporter assay revealed that g.173531213C>G reduced the transcriptional activity of the HAND2 gene promoter. EMSA and transcription factor prediction revealed that g.173531213C>G created a binding site for transcription factor. CONCLUSIONS The rare variation, g.173531213C>G, in the promoter region of the HAND2 gene participates in the development and progression of VSD possibly by affecting the binding of transcription factors.
Collapse
Affiliation(s)
- Mei-Kun Li
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China/Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272029, China
| | | | - Bo Yan
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China/Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
8
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
9
|
Liu YH, Yuan M, Xu BX, Gao R, You YJ, Wang ZX, Zhang YC, Guo M, Chen ZY, Yu BF, Wang QW, Wang HL, Pang M. ANKRD49 promotes the invasion and metastasis of lung adenocarcinoma via a P38/ATF-2 signalling pathway. J Cell Mol Med 2022; 26:4401-4415. [PMID: 35775112 PMCID: PMC9357638 DOI: 10.1111/jcmm.17464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most challenging neoplasm to treat in clinical practice. Ankyrin repeat domain 49 protein (ANKRD49) is highly expressed in several carcinomas; however, its pattern of expression and role in LUAD are not known. Tissue microarrays, immunohistochemistry, χ2 test, Spearman correlation analysis, Kaplan–Meier, log‐rank test, and Cox's proportional hazard model were used to analyse the clinical cases. The effect of ANKRD49 on the LUAD was investigated using CCK‐8, clonal formation, would healing, transwell assays, and nude mice experiment. Expressions of ANKRD49 and its associated downstream protein molecules were verified by real‐time PCR, Western blot, immunohistochemistry, and/or immunofluorescence analyses. ANKRD49 expression was highly elevated in LUAD. The survival rate and Cox's modelling analysis indicated that there may be an independent prognostic indicator for LUAD patients. We also found that ANKRD49 promoted the invasion and migration in both in in vitro and in vivo assays, through upregulating matrix metalloproteinase (MMP)‐2 and MMP‐9 activities via the P38/ATF‐2 signalling pathway Our findings suggest that ANKRD49 is a latent biomarker for evaluating LUAD prognosis and promotes the metastasis of A549 cells via upregulation of MMP‐2 and MMP‐9 in a P38/ATF‐2 pathway‐dependent manner.
Collapse
Affiliation(s)
- Yue-Hua Liu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China.,Xi'an Jiaotong University-Affiliated Honghui Hospital, Xi'an, China
| | - Meng Yuan
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Bai-Xue Xu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Rui Gao
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University; Shanxi Province Key Laboratory of Respiratory Disease, Taiyuan, China
| | - Yu-Jie You
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Yong-Cai Zhang
- Department of Cardiothoracic Surgery, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Min Guo
- Laboratory of Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, China
| | - Zhao-Yang Chen
- Laboratory of Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, China
| | - Bao-Feng Yu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Qi-Wei Wang
- Class ZT011907, The First Clinical Medical College, Shanxi Medical University, Jinzhong, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University; Shanxi Province Key Laboratory of Respiratory Disease, Taiyuan, China
| |
Collapse
|
10
|
Lombardo MS, Bärsch C, Hewicker-Trautwein M, Puff C. [Eccrine adenoma in a cat]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2022; 50:144-147. [PMID: 35523168 DOI: 10.1055/a-1792-9894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumors originating from eccrine glands are rare findings in dogs and cats. In most cases, the tumors are malignant, while adenomas are only reported anecdotally. In the present case, a one-year-old female, spayed cat was presented with a swelling of the footpad of the right forelimb. Initially, the mass possessed a diameter of 2 cm which progressed to 4 cm within the following two months. At the latter time point the tumor was ulcerated. After surgical removal, histological and immunohistochemical analyses were performed. Histologically, a well demarcated, nodular, multilobular mass was present. The cuboidal to columnar neoplastic cells were arranged in tubular and acinar structures. Tumor cells possessed large, round to oval nuclei with moderately distinct nucleoli. Mitotic figures averaged 0-1 per high power field. Additionally, large areas of chondroid metaplasia were evident. Immunohistochemically, neoplastic cells were positive for pan-cytokeratin AE1/AE3 whereas thyroid transcription factor 1 (TTF1) was not expressed. Based on the histological and immunohistochemical findings an adenoma of the eccrine glands was diagnosed.
Collapse
Affiliation(s)
| | | | | | - Christina Puff
- Institut für Pathologie, Stiftung Tierärztliche Hochschule Hannover
| |
Collapse
|
11
|
Afify SM, Hassan G, Ishii H, Monzur S, Nawara HM, Osman A, Abu Quora HA, Sheta M, Zahra MH, Seno A, Seno M. Functional and Molecular Characters of Cancer Stem Cells Through Development to Establishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:83-101. [PMID: 36587303 DOI: 10.1007/978-3-031-12974-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.
Collapse
Affiliation(s)
- Said M Afify
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Division of Biochemistry, Chemistry Department, Menoufia University, Shebin El Koum, 32511, Egypt
| | - Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Pharmacy, Department of Microbiology and Biochemistry, Damascus University, Damascus, 10769, Syria
| | - Hiroko Ishii
- GSP Enterprise, Inc, 1-4-38 12F Minato-Machi, Naniwaku, Osaka, 556-0017, Japan
| | - Sadia Monzur
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hend M Nawara
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Amira Osman
- Faculty of Medicine, Department of Histology, Kafr Elsheikh University, Kafr Elsheikh, 33511, Egypt
| | - Hagar A Abu Quora
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Cytology, Histology and Histochemistry, Zoology Department, Menoufia University, Menoufia, 32511, Egypt
| | - Mona Sheta
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Maram H Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
12
|
Su PH, Huang RL, Lai HC, Chen LY, Weng YC, Wang CC, Wu CC. NKX6-1 mediates cancer stem-like properties and regulates sonic hedgehog signaling in leiomyosarcoma. J Biomed Sci 2021; 28:32. [PMID: 33906647 PMCID: PMC8077933 DOI: 10.1186/s12929-021-00726-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Leiomyosarcoma (LMS), the most common soft tissue sarcoma, exhibits heterogeneous and complex genetic karyotypes with severe chromosomal instability and rearrangement and poor prognosis. Methods Clinical variables associated with NKX6-1 were obtained from The Cancer Genome Atlas (TCGA). NKX6-1 mRNA expression was examined in 49 human uterine tissues. The in vitro effects of NXK6-1 in LMS cells were determined by reverse transcriptase PCR, western blotting, colony formation, spheroid formation, and cell viability assays. In vivo tumor growth was evaluated in nude mice. Results Using The Cancer Genome Atlas (TCGA) and human uterine tissue datasets, we observed that NKX6-1 expression was associated with poor prognosis and malignant potential in LMS. NKX6-1 enhanced in vitro tumor cell aggressiveness via upregulation of cell proliferation and anchorage-independent growth and promoted in vivo tumor growth. Moreover, overexpression and knockdown of NKX6-1 were associated with upregulation and downregulation, respectively, of stem cell transcription factors, including KLF8, MYC, and CD49F, and affected sphere formation, chemoresistance, NOTCH signaling and Sonic hedgehog (SHH) pathways in human sarcoma cells. Importantly, treatment with an SHH inhibitor (RU-SKI 43) but not a NOTCH inhibitor (DAPT) reduced cell survival in NKX6-1-expressing cancer cells, indicating that an SHH inhibitor could be useful in treating LMS. Finally, using the TCGA dataset, we demonstrated that LMS patients with high expression of NKX6-1 and HHAT, an SHH pathway acyltransferase, had poorer survival outcomes compared to those without. Conclusions Our findings indicate that NKX6-1 and HHAT play critical roles in the pathogenesis of LMS and could be promising diagnostic and therapeutic targets for LMS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00726-6.
Collapse
Affiliation(s)
- Po-Hsuan Su
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rui-Lan Huang
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Yu Chen
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Chien Wang
- Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Neihu District, No. 325, Sec. 2, Chengong Road, Taipei, 11490, Taiwan
| | - Chia-Chun Wu
- Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Neihu District, No. 325, Sec. 2, Chengong Road, Taipei, 11490, Taiwan.
| |
Collapse
|
13
|
Li H, Wang J, Huang K, Zhang T, Gao L, Yang S, Yi W, Niu Y, Liu H, Wang Z, Wang G, Tao K, Wang L, Cai K. Nkx2.5 Functions as a Conditional Tumor Suppressor Gene in Colorectal Cancer Cells via Acting as a Transcriptional Coactivator in p53-Mediated p21 Expression. Front Oncol 2021; 11:648045. [PMID: 33869046 PMCID: PMC8047315 DOI: 10.3389/fonc.2021.648045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Yi
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Fang C, Xu D, Su J, Dry JR, Linghu B. DeePaN: deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers for immunotherapy. NPJ Digit Med 2021; 4:14. [PMID: 33531613 PMCID: PMC7854753 DOI: 10.1038/s41746-021-00381-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Immuno-oncology (IO) therapies have transformed the therapeutic landscape of non-small cell lung cancer (NSCLC). However, patient responses to IO are variable and influenced by a heterogeneous combination of health, immune, and tumor factors. There is a pressing need to discover the distinct NSCLC subgroups that influence response. We have developed a deep patient graph convolutional network, we call "DeePaN", to discover NSCLC complexity across data modalities impacting IO benefit. DeePaN employs high-dimensional data derived from both real-world evidence (RWE)-based electronic health records (EHRs) and genomics across 1937 IO-treated NSCLC patients. DeePaN demonstrated effectiveness to stratify patients into subgroups with significantly different (P-value of 2.2 × 10-11) overall median survival of 20.35 months and 9.42 months post-IO therapy. Significant differences in IO outcome were not seen from multiple non-graph-based unsupervised methods. Furthermore, we demonstrate that patient stratification from DeePaN has the potential to augment the emerging IO biomarker of tumor mutation burden (TMB). Characterization of the subgroups discovered by DeePaN indicates potential to inform IO therapeutic insight, including the enrichment of mutated KRAS and high blood monocyte count in the IO beneficial and IO non-beneficial subgroups, respectively. Our work has proven the concept that graph-based AI is feasible and can effectively integrate high-dimensional genomic and EHR data to meaningfully stratify cancer patients on distinct clinical outcomes, with potential to inform precision oncology.
Collapse
Affiliation(s)
- Chao Fang
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jing Su
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| | - Jonathan R Dry
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA.
| | - Bolan Linghu
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA.
| |
Collapse
|
15
|
Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data. Biomolecules 2020; 10:biom10101460. [PMID: 33086649 PMCID: PMC7603376 DOI: 10.3390/biom10101460] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mortality attributed to lung cancer accounts for a large fraction of cancer deaths worldwide. With increasing mortality figures, the accurate prediction of prognosis has become essential. In recent years, multi-omics analysis has emerged as a useful survival prediction tool. However, the methodology relevant to multi-omics analysis has not yet been fully established and further improvements are required for clinical applications. In this study, we developed a novel method to accurately predict the survival of patients with lung cancer using multi-omics data. With unsupervised learning techniques, survival-associated subtypes in non-small cell lung cancer were first detected using the multi-omics datasets from six categories in The Cancer Genome Atlas (TCGA). The new subtypes, referred to as integration survival subtypes, clearly divided patients into longer and shorter-surviving groups (log-rank test: p = 0.003) and we confirmed that this is independent of histopathological classification (Chi-square test of independence: p = 0.94). Next, an attempt was made to detect the integration survival subtypes using only one categorical dataset. Our machine learning model that was only trained on the reverse phase protein array (RPPA) could accurately predict the integration survival subtypes (AUC = 0.99). The predicted subtypes could also distinguish between high and low risk patients (log-rank test: p = 0.012). Overall, this study explores novel potentials of multi-omics analysis to accurately predict the prognosis of patients with lung cancer.
Collapse
|
16
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
|
17
|
Chung HH, Lee CT, Hu JM, Chou YC, Lin YW, Shih YL. NKX6.1 Represses Tumorigenesis, Metastasis, and Chemoresistance in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21145106. [PMID: 32707737 PMCID: PMC7404324 DOI: 10.3390/ijms21145106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence suggests that NKX6.1 (NK homeobox 1) plays a role in various types of cancer. In our previous studies, we identified NKX6.1 hypermethylation as a promising marker and demonstrated that the NKX6.1 gene functions as a metastasis suppressor through the epigenetic regulation of the epithelial-to-mesenchymal transition (EMT) in cervical cancer. More recently, we have demonstrated that NKX6.1 methylation is related to the chemotherapy response in colorectal cancer (CRC). Nevertheless, the biological function of NKX6.1 in the tumorigenesis of CRC remains unclear. In this study, we showed that NKX6.1 suppresses tumorigenic and metastatic ability both in vitro and in vivo. NKX6.1 represses cell invasion partly through the modulation of EMT. The overexpression of NKX6.1 enhances chemosensitivity in CRC cells. To further explore how NKX6.1 exerts its tumor-suppressive function, we used RNA sequencing technology for comprehensive analysis. The results showed that differentially expressed genes (DEGs) were mainly related to cell migration, response to drug, transcription factor activity, and growth factor activity, suggesting that these DEGs are involved in the function of NKX6.1 suppressing cancer invasion and metastasis. Our results demonstrated that NKX6.1 functions as a tumor suppressor partly by repressing EMT and enhancing chemosensitivity in CRC, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Hsin-Hua Chung
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
| | - Chun-Te Lee
- Division of Urological Surgery, Department of Surgery, Tri-Service General Hospital Songshan Branch, No.131, Jiankang Rd., Songshan District, Taipei 10581, Taiwan;
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan;
| | - Ya-Wen Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan
| | - Yu-Lueng Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, No.161, Sec.6, Minquan East Rd., Neihu District, Taipei 11490, Taiwan; (H.-H.C.); (J.-M.H.); (Y.-W.L.)
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei 11490, Taiwan
- Correspondence: ; Tel./Fax: +886-2-87917654
| |
Collapse
|
18
|
Svaton M, Fiala O, Krakorova G, Blazek J, Hurdalkova K, Barinova M, Mukensnabl P, Pesek M. Thyroid transcription factor 1 and p63 expression is associated with survival outcome in patients with non-small cell lung cancer treated with erlotinib. Oncol Lett 2020; 20:1376-1382. [PMID: 32724380 PMCID: PMC7377161 DOI: 10.3892/ol.2020.11663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
While erlotinib is primarily administered to patients with non-small cell lung cancer with sensitizing epidermal growth factor receptor (EGFR) mutations, it is also prescribed to patients with wild type (wt) EGFR in higher lines of treatment. However, there is no predictive marker for erlotinib efficacy in patients with EGFR wt. Certain immunohistochemical (IHC) parameters, including thyroid transcription factor 1 (TTF1) and p63, have been reported to indicate predictive power in patients with EGFR wt. The present study focused on retrospective data from the University Hospital in Pilsen using the TULUNG register. TTF1 and p63 expression data were extracted from the hospital information system and merged with registry data to calculate progression-free survival (PFS) and overall survival (OS) rates. A cohort of 345 patients with adenocarcinoma (ADC) or squamous cell carcinoma (SCC) exhibited similar erlotinib efficacies when TTF1 and p63 were ignored. However, significant differences were reported in PFS and OS rates of a subgroup of 126 patients where TTF1 and p63 parameters were known. In a univariate analysis, group A (ADC TTF1+/p63-) achieved PFS of 2.6 months, group B (SSC TTF1-/p63+) 1.9 months and group C (did not fit into groups A or B, i.e., ADC TTF1-/p63+ or SCC TTF1+/p63-) 1.4 months (P=0.006). Median OS was 14.2, 19.1 and 5.3 months for A, B and C, respectively (P=0.002). Furthermore, a multivariate analysis demonstrated IHC markers to be the only significant parameters for PFS and OS. Group C had a negative prognostic factor for PFS [hazard ratio (HR), 1.812; P=0.02] and OS (HR=2.367; P=0.01). In conclusion, patients with EGFR wt and lung carcinomas without TTF1 and p63 expression typical for ADC (TTF1+/p633-) or SCC (TTF1-/p63+) do not appear to be suitable candidates for erlotinib treatment.
Collapse
Affiliation(s)
- Martin Svaton
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Ondrej Fiala
- Department of Oncology and Radiotherapy, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Gabriela Krakorova
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Jiri Blazek
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | | | - Magda Barinova
- Institute of Biostatistics and Analyses Ltd., 625 00 Brno, Czech Republic
| | - Petr Mukensnabl
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Milos Pesek
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| |
Collapse
|
19
|
TTF-1/Nkx2.1 functional connection with mutated EGFR relies on LRIG1 and β-catenin pathways in lung cancer cells. Biochem Biophys Res Commun 2018; 505:1027-1031. [PMID: 30314701 DOI: 10.1016/j.bbrc.2018.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
In non-small lung cancer, the expression of the transcription factor TTF-1/Nkx2.1 correlates with the presence of EGFR mutations, therefore TTF-1/Nkx2.1 expression is used to optimize an EGFR testing strategy and to guide clinical treatment. We investigate the molecular mechanisms underlying the functional connection between EGFR and TTF-1/Nkx2.1 gene expression in lung adenocarcinoma. Using the H1975 cell line as a non-small cell lung cancer model system and short hairpin RNA, we have selected clones with TTF-1/Nkx2.1 silenced expression. We have found that Leucine-rich immunoglobulin repeats-1 (LRIG1) gene is a direct target of TTF-1/Nkx2.1 and the transcription factor binding to the LRIG1 genomic sequence inhibits its gene expression. In TTF-1/Nkx2.1 depleted clones, we have found high levels of LRIG1 and decreased presence of EGFR protein. Furthermore, in TTF-1/Nkx2.1 depleted clones we detected a reduced β-catenin level and we provide experimental evidence indicating that TTF-1/Nkx2.1 gene expression is regulated by β-catenin. Published studies indicate that LRIG1 triggers EGFR degradation and that mutated EGFR induces β-catenin activity. Hence, with the present study we show that mutated EGFR, enhancing β-catenin, stimulates TTF-1/Nkx2.1 gene expression and, at the same time, TTF-1/Nkx2.1, down-regulating LRIG1, sustains EGFR pathway. Therefore, LRIG1 and β-catenin mediate the functional connection between TTF-1/Nkx2.1 and mutated EGFR.
Collapse
|
20
|
Vesterinen T, Mononen S, Salmenkivi K, Mustonen H, Räsänen J, Salo JA, Ilonen I, Knuuttila A, Haglund C, Arola J. Clinicopathological indicators of survival among patients with pulmonary carcinoid tumor. Acta Oncol 2018; 57:1109-1116. [PMID: 29463166 DOI: 10.1080/0284186x.2018.1441543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Pulmonary carcinoids (PC) are rare malignant neoplasms that cover approximately 1% of all lung cancers. PCs are classified by histological criteria as either typical (TC) or atypical (AC). Histological subtype is the most studied prognostic factor. The aim of this study was to evaluate if other tissue or clinical features are associated with patient outcomes. MATERIAL AND METHODS We retrospectively reviewed clinical records of 133 PC patients who underwent operation in the Helsinki University Hospital between 1990 and 2013. Tissue specimens were re-evaluated, processed into tissue microarray format and stained immunohistochemically with serotonin, calcitonin, adrenocorticotropic hormone (ACTH), thyroid transcription factor-1 (TTF-1) and Ki-67. Survival and risk analyses were performed. RESULTS Based on histology, 75% (n = 100) of the tumors were TCs and 25% (n = 33) ACs. TCs had higher 10-year disease-specific survival (DSS) rate than ACs (99% (95% CI, 93-100%) for TCs vs. 82% (95% CI, 61-92%) for ACs). Hormonally active tumors expressing serotonin, calcitonin or ACTH were noted in 53% of the specimens but hormonal expression was not associated with DSS. TTF-1 was positive in 78% of the specimens but was not associated with DSS. Ki-67 index varied between <1% and 15%. Ki-67 ≥ 2.5% was associated with shorter DSS (p = .004). The presence of metastatic disease (p = .001), tumor size ≥30 mm (p = .021) and atypical histology (p = .011) were also associated with disease-specific mortality. CONCLUSIONS We conclude that PCs are uncommon tumors. When resected, the long-term survival is in general favorable. In this consecutive, single-institution cohort of patients, presence of metastatic disease, tumor size, histological subtype and Ki-67 index were associated with shorter disease-specific survival. As TC and AC have different clinical behaviors, the correct tumor classification at the time of diagnosis is a necessity.
Collapse
Affiliation(s)
- Tiina Vesterinen
- HUSLAB, Helsinki Biobank, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanna Mononen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Salmenkivi
- HUSLAB, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jari Räsänen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Jarmo A. Salo
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Ilonen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine, Heart and Lung Center, and Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Johanna Arola
- HUSLAB, Helsinki Biobank, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Vojkovics D, Kellermayer Z, Kajtár B, Roncador G, Vincze Á, Balogh P. Nkx2-3-A Slippery Slope From Development Through Inflammation Toward Hematopoietic Malignancies. Biomark Insights 2018; 13:1177271918757480. [PMID: 29449776 PMCID: PMC5808962 DOI: 10.1177/1177271918757480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022] Open
Abstract
The development of peripheral lymphoid tissues from the mesoderm is the result of a complex convergence combining lymphohematopoietic differentiation with the local specification of nonhematopoietic mesenchymal components. Although the various transcriptional regulators with fate-determining effects in diversifying the mobile leukocyte subsets have been thoroughly studied and identified, the tissue-specific determinants promoting the regional differentiation of resident mesenchyme are less understood. Of these factors, various members of the NK-class Nkx paralogues have emerged as key regulators for the organogenesis of spleen and mucosal lymphoid tissues, and recent data have also indicated their involvement in various pathological events, including gut inflammation and hematopoietic malignancies. Here, we summarize available data on the roles of Nkx2-3 in lymphoid tissue development and discuss its possible value as a developmental marker and disease-associated pathogenic trait.
Collapse
Affiliation(s)
- Dóra Vojkovics
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | | | - Áron Vincze
- 1st Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
22
|
Ursu O, Gosline SJC, Beeharry N, Fink L, Bhattacharjee V, Huang SSC, Zhou Y, Yen T, Fraenkel E. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens. PLoS One 2017; 12:e0185650. [PMID: 29023490 PMCID: PMC5638242 DOI: 10.1371/journal.pone.0185650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/15/2017] [Indexed: 01/22/2023] Open
Abstract
Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of action. We report a screen for kinase inhibitors that increase the efficacy of gemcitabine, the first-line chemotherapy for pancreatic cancer. Eight kinase inhibitors emerge that are known to affect 201 kinases, of which only three kinases have been previously identified as modifiers of gemcitabine toxicity. In this work, we use the SAMNet algorithm to identify pathways linking these kinases and genetic modifiers of gemcitabine toxicity with transcriptional and epigenetic changes induced by gemcitabine that we measure using DNaseI-seq and RNA-seq. SAMNet uses a constrained optimization algorithm to connect genes from these complementary datasets through a small set of protein-protein and protein-DNA interactions. The resulting network recapitulates known pathways including DNA repair, cell proliferation and the epithelial-to-mesenchymal transition. We use the network to predict genes with important roles in the gemcitabine response, including six that have already been shown to modify gemcitabine efficacy in pancreatic cancer and ten novel candidates. Our work reveals the important role of polypharmacology in the activity of these chemosensitizing agents.
Collapse
Affiliation(s)
- Oana Ursu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sara J. C. Gosline
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Neil Beeharry
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Lauren Fink
- Cancer Biology Program, Fox Chase Cancer Center; Philadelphia, Pennsylvania, United States of America
| | | | - Shao-shan Carol Huang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Tim Yen
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Herriges MJ, Tischfield DJ, Cui Z, Morley MP, Han Y, Babu A, Li S, Lu M, Cendan I, Garcia BA, Anderson SA, Morrisey EE. The NANCI-Nkx2.1 gene duplex buffers Nkx2.1 expression to maintain lung development and homeostasis. Genes Dev 2017; 31:889-903. [PMID: 28546511 PMCID: PMC5458756 DOI: 10.1101/gad.298018.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors (TFs) across the genome, but how these lncRNA–TF gene duplexes regulate tissue development and homeostasis is unclear. Here, Herriges et al. identified a feedback loop within the NANCI–Nkx2.1 gene duplex that is essential for buffering Nkx2.1 expression, lung epithelial cell identity, and tissue homeostasis. A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors (TFs) across the genome, but how these lncRNA–TF gene duplexes regulate tissue development and homeostasis is unclear. We identified a feedback loop within the NANCI (Nkx2.1-associated noncoding intergenic RNA)–Nkx2.1 gene duplex that is essential for buffering Nkx2.1 expression, lung epithelial cell identity, and tissue homeostasis. Within this locus, Nkx2.1 directly inhibits NANCI, while NANCI acts in cis to promote Nkx2.1 transcription. Although loss of NANCI alone does not adversely affect lung development, concurrent heterozygous mutations in both NANCI and Nkx2.1 leads to persistent Nkx2.1 deficiency and reprogramming of lung epithelial cells to a posterior endoderm fate. This disruption in the NANCI–Nkx2.1 gene duplex results in a defective perinatal innate immune response, tissue damage, and progressive degeneration of the adult lung. These data point to a mechanism in which lncRNAs act as rheostats within lncRNA–TF gene duplex loci that buffer TF expression, thereby maintaining tissue-specific cellular identity during development and postnatal homeostasis.
Collapse
Affiliation(s)
- Michael J Herriges
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J Tischfield
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zheng Cui
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yumiao Han
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Apoorva Babu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Su Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - MinMin Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Isis Cendan
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Stewart A Anderson
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Li W, Itou J, Tanaka S, Nishimura T, Sato F, Toi M. A homeobox protein, NKX6.1, up-regulates interleukin-6 expression for cell growth in basal-like breast cancer cells. Exp Cell Res 2016; 343:177-189. [PMID: 27032575 DOI: 10.1016/j.yexcr.2016.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/19/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Among breast cancer subtypes, basal-like breast cancer is particularly aggressive, and research on the molecules involved in its pathology might contribute to therapy. In this study, we found that expression of NKX6.1, a homeobox transcription factor, is higher in basal-like breast cancer than in other subtypes. In loss-of-function experiments on basal-like breast cancer cell lines, NKX6.1-depleted cells exhibited reduced cell growth. Because cytokine interleukin-6 (IL-6) is expressed in basal-like breast cancer, and increases cell growth, we analyzed expression levels of IL6, an IL-6 gene, and observed reduced IL6 expression in NKX6.1-depleted cells. In a reporter assay, IL6 promoter activity was reduced by loss of NKX6.1 function. A pull-down assay showed that NKX6.1 binds to the proximal region in IL6 promoter. These results indicate that NKX6.1 directly up-regulates IL6 expression. To investigate further, we established cells with forced expression of IL-6. We observed that exogenous IL-6 expression restored the reduced cell growth of NKX6.1-depleted cells. Furthermore, orthotopic xenografts showed that NKX6.1-depleted cells lost the capacity for tumor formation. We therefore conclude that NKX6.1 is a factor for IL-6-regulated growth and tumor formation in basal-like breast cancer. Our findings facilitate profound understanding of basal-like breast cancer, and the development of suitable therapy.
Collapse
Affiliation(s)
- Wenzhao Li
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Sunao Tanaka
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fumiaki Sato
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
25
|
Chen Y, Wang L, Li L, Zhang H, Yuan Z. Informative gene selection and the direct classification of tumors based on relative simplicity. BMC Bioinformatics 2016; 17:44. [PMID: 26792270 PMCID: PMC4721022 DOI: 10.1186/s12859-016-0893-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Selecting a parsimonious set of informative genes to build highly generalized performance classifier is the most important task for the analysis of tumor microarray expression data. Many existing gene pair evaluation methods cannot highlight diverse patterns of gene pairs only used one strategy of vertical comparison and horizontal comparison, while individual-gene-ranking method ignores redundancy and synergy among genes. RESULTS Here we proposed a novel score measure named relative simplicity (RS). We evaluated gene pairs according to integrating vertical comparison with horizontal comparison, finally built RS-based direct classifier (RS-based DC) based on a set of informative genes capable of binary discrimination with a paired votes strategy. Nine multi-class gene expression datasets involving human cancers were used to validate the performance of new method. Compared with the nine reference models, RS-based DC received the highest average independent test accuracy (91.40%), the best generalization performance and the smallest informative average gene number (20.56). Compared with the four reference feature selection methods, RS also received the highest average test accuracy in three classifiers (Naïve Bayes, k-Nearest Neighbor and Support Vector Machine), and only RS can improve the performance of SVM. CONCLUSIONS Diverse patterns of gene pairs could be highlighted more fully while integrating vertical comparison with horizontal comparison strategy. DC core classifier can effectively control over-fitting. RS-based feature selection method combined with DC classifier can lead to more robust selection of informative genes and classification accuracy.
Collapse
Affiliation(s)
- Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Lifeng Wang
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Lanzhi Li
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Hongyan Zhang
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Zheming Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
26
|
Wang G, Yang X, Jin Y, Deng Y, Luo X, Hu J, Wang J. TGF-β regulates the proliferation of lung adenocarcinoma cells by inhibiting PIK3R3 expression. Mol Carcinog 2014; 54 Suppl 1:E162-71. [PMID: 25371235 DOI: 10.1002/mc.22243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/21/2014] [Accepted: 09/29/2014] [Indexed: 12/28/2022]
Abstract
PIK3R3, an isoform of class IA phosphoinositide 3-kinase (PI3K), specifically interacts with cell proliferation regulators, such as retinoblastoma and proliferation cell nuclear antigen, to promote cell proliferation. However, the mechanisms behind the upstream signaling pathway of PIK3R3 remain unclear to date. This study showed that PIK3R3 expression was regulated by transforming growth factor-β (TGF-β) signaling and that PIK3R3 mediated the TGF-β-induced inhibition of lung adenocarcinoma cell proliferation. TGF-β down-regulated PIK3R3 expression in lung adenocarcinoma cells. However, this TGF-β-induced inhibition of cell proliferation can be attenuated by PIK3R3 overexpression. In addition, TGF-β can attenuate the transcriptional activity of NKX2.1, a transcription factor that binds to the promoter of PIK3R3. This result indicated that TGF-β regulated PIK3R3 expression by targeting NKX2.1. We confirmed the correlation between NKX2.1 and PIK3R3 in clinical samples. Therefore, the TGF-β/NKX2.1/PIK3R3 axis is crucial in the TGF-β-induced inhibition of cell proliferation, and the NKX2.1/PIK3R3 axis might become a target in TGF-β receptor-repressed lung adenocarcinoma.
Collapse
Affiliation(s)
- Guihua Wang
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Yang
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of immunology, School of Basic Medicine, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Association between gene expression profiles and clinical outcome of pemetrexed-based treatment in patients with advanced non-squamous non-small cell lung cancer: exploratory results from a phase II study. PLoS One 2014; 9:e107455. [PMID: 25250715 PMCID: PMC4175467 DOI: 10.1371/journal.pone.0107455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/28/2014] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION We report exploratory gene-expression profiling data from a single-arm Phase-II-study in patients with non-squamous (ns)NSCLC treated with pemetrexed and cisplatin. Previously disclosed results indicated a significant association of low thymidylate-synthase (TS)-expression with longer progression-free and overall survival (PFS/OS). METHODS Treatment-naïve nsNSCLC patients (IIIB/IV) received 4 cycles of pemetrexed/cisplatin; non-progressing patients continued on pemetrexed-maintenance. Diagnostic tissue-samples were used to assess TS-expression by immunohistochemistry (IHC) and mRNA-expression array-profiling (1,030 lung cancer-specific genes). Cox proportional-hazard models were applied to explore the association between each gene and PFS/OS. Genes significantly correlated with PFS/OS were further correlated with TS-protein expression (Spearman-rank). Unsupervised clustering was applied to all evaluable samples (n = 51) for all 1,030 genes and an overlapping 870-gene subset associated with adenocarcinoma (ADC, n = 47). RESULTS 51/70 tissue-samples (72.9%) were evaluable; 9 of 1,030 genes were significantly associated with PFS/OS (unadjusted p < 0.01, genes: Chromosome 16 open reading frame 89, napsin A, surfactant protein B, aquaporin 4, TRAF2- and Nck-interacting kinase, Lysophosphatidylcholine acyltransferase 1, Interleukin 1 receptor type II, NK2 homeobox 1, ABO glycosyl-transferase); expression for all except IL1R2 correlated negatively with nuclear TS-expression (statistically significant for 5/8 genes, unadjusted p<0.01). Cluster-analysis based on 1,030 genes revealed no clear trend regarding PFS/OS; the ADC-based cluster analysis identified 3 groups (n = 21/11/15) with median (95%CI) PFS of 8.1(6.9,NE)/2.4(1.2,NE)/4.4(1.2,NE) months and OS of 20.3(17.5,NE)/4.3(1.4,NE)/8.3(3.9,NE) months, respectively. CONCLUSIONS These exploratory gene-expression profiling results describe genes potentially linked to low TS-expression. Nine genes were significantly associated with PFS/OS but could not be differentiated as prognostic or predictive as this was a single-arm study. Although these hypotheses-generating results are interesting, they provide no evidence to change the current histology-based treatment approach with pemetrexed.
Collapse
|