1
|
Ding L, Roeck K, Zhang C, Zidek B, Rodman E, Hernandez-Barco Y, Zhang JS, Bamlet W, Oberg A, Zhang L, Bardeesy N, Li H, Billadeau D. Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Front Cell Dev Biol 2022; 10:853003. [PMID: 35646902 PMCID: PMC9136019 DOI: 10.3389/fcell.2022.853003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3β in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3β animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene—referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3β highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3β and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.
Collapse
Affiliation(s)
- Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| | - Kaely Roeck
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brooke Zidek
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esther Rodman
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jin-San Zhang
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William Bamlet
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ann Oberg
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nabeel Bardeesy
- Center for Cancer Research, Harvard Medical School, Boston, MA, United States
| | - Hu Li
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| |
Collapse
|
2
|
Fouad Shalaby M, Latif HAAE, Yamani ME, Galal MA, Kamal S, Sindi I. Protective Role of Sarpogrelate in Combination with Bromocriptine and Cabergoline for Treatment of Diabetes in Alloxan-induced Diabetic Rats. CURRENT THERAPEUTIC RESEARCH 2021; 95:100647. [PMID: 34777640 PMCID: PMC8577162 DOI: 10.1016/j.curtheres.2021.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although dopamine D2 receptor agonists, bromocriptine and cabergoline, are notable medications in the treatment of Parkinsonism, hyperprolactinemia, and hyperglycemia, there is an identified relationship between the utilization of D2-like R agonists and the progress of myocardial injury, especially in the early phase of therapy. OBJECTIVE This investigation aimed to examine the potential activity of sarpogrelate (a 5-hydroxytryptamine 2A [5-HT2A] receptor blocker) in reducing myocardial injury prompted by extended haul utilization of D2 receptor agonists in a model of diabetic rats. METHODS In the in vivo studies, both bromocriptine and cabergoline were managed independently and combined with sarpogrelate for about a month in diabetic nephropathy rats. Blood glucose level and other myocardial biochemical parameters were estimated. The probable mechanism for insulin secretagogue action was evaluated through in vitro isolated islets study. Sodium/potassium-adenosine triphosphatase activity was assayed in an isolated microsomal fraction of the renal cortex. Isolated perfused rat hearts were treated with different doses of dopamine before and after being subjected to the tested drugs, dose response of heart rate, and heart contractility were recorded. RESULTS Bromocriptine and cabergoline created a significant reduction in blood glucose level without any action on insulin secretagogues. Bromocriptine prevented the loss of sodium/potassium-adenosine triphosphatase activity in the cortex of an ischemic kidney. Treatment of bromocriptine or cabergoline with sarpogrelate altogether decreased the levels of the elevated myocardial biomarkers in serum. Administration of different doses of dopamine in presence of bromocriptine or capergoline resulted in significantly rising in the heart rate percentage comparing to dopamine alone. A mix of bromocriptine or cabergoline with sarpogrelate diminished both heart rate and contractility, respectively. CONCLUSIONS The examination demonstrated that the combined use of sarpogrelate with bromocriptine or cabergoline decreased the potential adverse effects of these 2 drugs on myocardial tissues.
Collapse
Affiliation(s)
- Mohammed Fouad Shalaby
- Pharmaceutical Sciences Department, Pharmacy Programme, Batterjee Medical College, Jeddah, Kingdom of Saudi Arabia
| | - Hekma A. Abd El Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El Yamani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - May Ahmed Galal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherifa Kamal
- Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Ikhlas Sindi
- Research Unit, Batterjee Medical College, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Riley A, Green V, Cheah R, McKenzie G, Karsai L, England J, Greenman J. A novel microfluidic device capable of maintaining functional thyroid carcinoma specimens ex vivo provides a new drug screening platform. BMC Cancer 2019; 19:259. [PMID: 30902086 PMCID: PMC6429713 DOI: 10.1186/s12885-019-5465-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Though the management of malignancies has improved vastly in recent years, many treatment options lack the desired efficacy and fail to adequately augment patient morbidity and mortality. It is increasingly clear that patient response to therapy is unique to each individual, necessitating personalised, or 'precision' medical care. This demand extends to thyroid cancer; ~ 10% patients fail to respond to radioiodine treatment due to loss of phenotypic differentiation, exposing the patient to unnecessary ionising radiation, as well as delaying treatment with alternative therapies. METHODS Human thyroid tissue (n = 23, malignant and benign) was live-sliced (5 mm diameter × 350-500 μm thickness) then analysed or incorporated into a microfluidic culture device for 96 h (37 °C). Successful maintenance of tissue was verified by histological (H&E), flow cytometric propidium iodide or trypan blue uptake, immunohistochemical (Ki67 detection/ BrdU incorporation) and functional analysis (thyroxine [T4] output) in addition to analysis of culture effluent for the cell death markers lactate dehydrogenase (LDH) and dead-cell protease (DCP). Apoptosis was investigated by Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Differentiation was assessed by evaluation of thyroid transcription factor (TTF1) and sodium iodide symporter (NIS) expression (western blotting). RESULTS Maintenance of gross tissue architecture was observed. Analysis of dissociated primary thyroid cells using flow cytometry both prior to and post culture demonstrated no significant change in the proportion of viable cells. LDH and DCP release from on-chip thyroid tissue indicated that after an initial raised level of release, signifying cellular damage, detectable levels dropped markedly. A significant increase in apoptosis (p < 0.01) was observed after tissue was perfused with etoposide and JNK inhibitor, but not in control tissue incubated for the same time period. No significant difference in Ki-67 positivity or TTF1/NIS expression was detected between fresh and post-culture thyroid tissue samples, moreover BrdU positive nuclei indicated on-chip cellular proliferation. Cultured thyroid explants were functionally viable as determined by production of T4 throughout the culture period. CONCLUSIONS The described microfluidic platform can maintain the viability of thyroid tissue slices ex vivo for a minimum of four days, providing a platform for the assessment of thyroid tissue radioiodine sensitivity/adjuvant therapies in real time.
Collapse
Affiliation(s)
- Andrew Riley
- Faculty of Health Sciences, University of Hull, Kingston upon Hull, HU6 7RX UK
| | - Victoria Green
- Faculty of Health Sciences, University of Hull, Kingston upon Hull, HU6 7RX UK
| | - Ramsah Cheah
- Faculty of Health Sciences, University of Hull, Kingston upon Hull, HU6 7RX UK
| | - Gordon McKenzie
- Faculty of Health Sciences, University of Hull, Kingston upon Hull, HU6 7RX UK
- Hull York Medical School, University of Hull, Kingston upon Hull, HU6 7RX UK
| | - Laszlo Karsai
- Hull and East Yorkshire Hospitals NHS Trust, Kingston upon Hull, HU16 5JQ UK
| | - James England
- Hull and East Yorkshire Hospitals NHS Trust, Kingston upon Hull, HU16 5JQ UK
| | - John Greenman
- Faculty of Health Sciences, University of Hull, Kingston upon Hull, HU6 7RX UK
| |
Collapse
|
4
|
Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 2018; 13:2742-2757. [DOI: 10.1038/s41596-018-0073-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Assi M, Dauguet N, Jacquemin P. DIE-RNA: A Reproducible Strategy for the Digestion of Normal and Injured Pancreas, Isolation of Pancreatic Cells from Genetically Engineered Mouse Models and Extraction of High Quality RNA. Front Physiol 2018. [PMID: 29535635 PMCID: PMC5835134 DOI: 10.3389/fphys.2018.00129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Collapse
Affiliation(s)
- Mohamad Assi
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- de Duve Institute, Flow Cytometry and Cell Sorting Facility (CYTF), Brussels, Belgium
| | - Patrick Jacquemin
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Chen W, Zheng Z, Duan J, Wang X, Wu S, Wang W, Xu L, Han S, Qiao Z. Quantitation of nuclear factor kappa B activation in pancreatic acinar cells during rat acute pancreatitis by flow cytometry. Int J Clin Exp Med 2015; 8:10143-10151. [PMID: 26309713 PMCID: PMC4538060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to develop a specific and sensitive method for the rapid detection of NF-κB activity in pancreatic tissue. Male Wistar rats were randomly divided into two groups: (1) 16 rats in the acute pancreatitis (AP) group received retrograde injection of 5% sodium taurocholate (STC) into the biliopancreatic duct, and (2) 16 rats in the Control group received saline. NF-κB activation in rat pancreatic acinar cells was assessed by flow cytometry (FCM). We found that the NF-κB activity in the AP group significantly increased at 1.5 h (29.80%±7.83), had a peak at 3 h (65.17%±13.22), and then decreased gradually to 12 h time point, close to the level after 1.5 h stimulation of STC. The NF-κB activity of the Control group did not significantly vary at different time points (P>0.05). FCM is a specific and sensitive assay for the rapid detection of NF-κB activity in pancreatic tissue.
Collapse
Affiliation(s)
- Wenliang Chen
- Department of General Surgery and Surgical Intensive Care Units, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Zhuanzhen Zheng
- Department of Hematology, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Junfang Duan
- Department of General Surgery and Surgical Intensive Care Units, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Xiaoru Wang
- Department of General Surgery and Surgical Intensive Care Units, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Shirong Wu
- Department of General Surgery and Surgical Intensive Care Units, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Wei Wang
- Department of General Surgery and Surgical Intensive Care Units, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Lu Xu
- Department of Minimally Invasive Surgery of The 1st Affiliated Hospital of Soochow UniversitySuzhou 215000, China
| | - Shuguang Han
- Department of General Surgery and Surgical Intensive Care Units, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| | - Zhenhua Qiao
- Department of Hematology, The 2nd Affiliated Hospital of Shanxi Medical UniversityTaiyuan 030001, China
| |
Collapse
|