1
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Boccardi V, Cari L, Bastiani P, Scamosci M, Cecchetti R, Nocentini G, Mecocci P. Aberrant telomeric structures and serum markers of telomere dysfunction in healthy aging: a preliminary study. Biogerontology 2024; 25:1069-1077. [PMID: 39001954 DOI: 10.1007/s10522-024-10120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Telomeres undergo a progressive shortening process as individuals age, and it has been proposed that severely shortened and dysfunctional telomeres play a role in the aging process and the onset of age-related diseases in human beings. An emerging body of evidence indicates that the shortening of telomeres in cultured human cells is also influenced by other replication defects occurring within telomeric repeats. These abnormalities can be detected on metaphase chromosomes. Recent studies have also identified a set of serological markers for telomere dysfunction and DNA damage (elongation factor 1α [EF-1α], stathmin, and N-acetyl-glucosaminidase). With this study, the correlation between telomere abnormalities (by FISH) and these biomarkers as measured in blood serum (by ELISA) from a cohort of 22 healthy subjects at different ages (range 26-101 years) was analyzed. A strong positive correlation between aging and the presence of aberrant telomere structures, sister telomere loss (STL), and sister telomere chromatid fusions (STCF) was detected. When serum markers of telomere dysfunction were correlated with telomere abnormalities, we found that stathmin correlated with total aberrant telomeres structures (r = 0.431, p = 0.0453) and STCF (r = 0.533, p = 0.0107). These findings suggest that serum stathmin can be considered an easy-to-get marker of telomere dysfunction and may serve as valuable indicators of aging.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy.
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Luigi Cari
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Patrizia Bastiani
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Michela Scamosci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Roberta Cecchetti
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Telomere Attrition in Chronic Kidney Diseases. Antioxidants (Basel) 2023; 12:antiox12030579. [PMID: 36978826 PMCID: PMC10045531 DOI: 10.3390/antiox12030579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Telomeres are dynamic DNA nucleoprotein structures located at the end of chromosomes where they maintain genomic stability. Due to the end replication problem, telomeres shorten with each cell division. Critically short telomeres trigger cellular senescence, which contributes to various degenerative and age-related diseases, including chronic kidney diseases (CKDs). Additionally, other factors such as oxidative stress may also contribute to accelerated telomere shortening. Indeed, telomeres are highly susceptible to oxidative damage due to their high guanine content. Here, we provide a comprehensive review of studies examining telomere length (TL) in CKDs to highlight the association between TL and the development and progression of CKDs in humans. We then focus on studies investigating TL in patients receiving kidney replacement therapy. The mechanisms of the relationship between TL and CKD are not fully understood, but a shorter TL has been associated with decreased kidney function and the progression of nephropathy. Interestingly, telomere lengthening has been observed in some patients in longitudinal studies. Hemodialysis has been shown to accelerate telomere erosion, whereas the uremic milieu is not reversed even in kidney transplantation patients. Overall, this review aims to provide insights into the biological significance of telomere attrition in the pathophysiology of kidney disease, which may contribute to the development of new strategies for the management of patients with CKDs.
Collapse
|
4
|
Arabi T, Shafqat A, Sabbah BN, Fawzy NA, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2022; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Tarek Arabi,
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Jia S, Peng X, Liang L, Zhang Y, Li M, Zhou Q, Shen X, Wang Y, Wang C, Feng S, Chen J, Ren P, Jiang H. The Study of Angptl4-Modulated Podocyte Injury in IgA Nephropathy. Front Physiol 2021; 11:575722. [PMID: 33643055 PMCID: PMC7905042 DOI: 10.3389/fphys.2020.575722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Background Increasing evidence shows that Angptl4 affects proteinuria in podocytes injured kidney disease, however, whether there is a relationship between Angptl4 and IgA nephropathy (IgAN) has not been studied yet. Methods Plasma and urine samples were obtained from 71 patients with IgAN and 61 healthy controls. Glomeruli from six renal biopsy specimens (three IgAN patients and three healthy controls) were separated by RNA-Seq. Differentially expressed genes (DEGs) related to podocytes and Angptl4 between IgAN patients and healthy controls were performed using the Limma package. Gene set enrichment analysis was used to determine whether there was a statistically significant difference between the two groups. STRING was used to create a protein-protein interaction network of DEGs. Association analysis between Angptl4 levels and clinical features of IgAN was performed. Results Thirty-three podocyte-related and twenty-three Angpt4-related DEGs were found between IgAN patients and healthy controls. By overlapping the genes, FOS and G6PC were found to be upregulated in IgAN patients, while MMP9 was downregulated in IgAN patients. Plasma and urine Angptl4 levels were closely related to the degree of podocyte injury and urine protein, but not to the protein-creatine ratio. Conclusion Our findings show that Angptl4 levels in plasma and urine are related to podocyte damage and, therefore, may be a promising tool for assessing the severity of IgAN patients to identify and reverse the progression to ESRD.
Collapse
Affiliation(s)
- Sha Jia
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Dongyang Women & Children Hospital, Dongyang, China
| | - Xiaofeng Peng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Ludan Liang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Meng Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Xiujin Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Beijing, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Apeland T, Mansoor MA, Furriol J, Ushakova A, Jonsson G, Stangeland KW, Marti HP. Circulating inflammation-related factors are correlated with systemic redox status in IgA nephropathy; a case-control study. Free Radic Biol Med 2020; 155:10-18. [PMID: 32428564 DOI: 10.1016/j.freeradbiomed.2020.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND IgA nephropathy (IGAN) is characterized by oxidative stress and inflammation. In the present study, we explored the relationship of redox status vs. that of circulating inflammation-related factors with other biomarkers in patients with IGAN. METHODS This is a case-control study comparing patients with IGAN (Stage 1-4) to healthy controls. Forty patients and 40 controls were matched for age and sex. Two circulating dynamic redox parameters were analysed: oxidized free cysteine (Cys) and nitrate. Thirty-seven inflammation-related factors were measured in serum. RESULTS The patients had elevated levels of oxidized free Cys and nitrate, indicating the presence of oxidative stress. Nine circulating inflammation-related factors were higher in the serum of patients than in that of controls. The most important factors were APRIL, MMP-3, osteopontin, TNFR1 and TWEAK. Inflammation-related factors were positively correlated with oxidized free Cys, nitrate, creatinine and parathyroid hormone (PTH) in the patients. The correlation coefficients of Latent Inflammatory Factor vs. oxidized free Cys and nitrate were r = 0.43 (p = 0.007) and r = 0.51 (p = 0.001), respectively. This finding persisted after adjusting for the glomerular filtration rate. CONCLUSIONS Patients with IGAN had disturbed redox status. Several circulating inflammation-related factors were elevated, suggesting activation of the non-canonical NF-kB pathway. There was a positive relationship between systemic redox status and the level of inflammation-related factors, partially independent of GFR. The present findings raise the question of whether circulating oxidized free Cys and/or nitrate may be employed as prognostic biomarkers for IGAN in the future.
Collapse
Affiliation(s)
- Terje Apeland
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway.
| | - Mohammad A Mansoor
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Jessica Furriol
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anastasia Ushakova
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Grete Jonsson
- Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Kari W Stangeland
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Hans-Peter Marti
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Zhou B, Wan Y, Chen R, Zhang C, Li X, Meng F, Glaser S, Wu N, Zhou T, Li S, Francis H, Alpini G, Zou P. The emerging role of cellular senescence in renal diseases. J Cell Mol Med 2020; 24:2087-2097. [PMID: 31916698 PMCID: PMC7011136 DOI: 10.1111/jcmm.14952] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence represents the state of irreversible cell cycle arrest during cell division. Cellular senescence not only plays a role in diverse biological events such as embryogenesis, tissue regeneration and repair, ageing and tumour occurrence prevention, but it is also involved in many cardiovascular, renal and liver diseases through the senescence-associated secretory phenotype (SASP). This review summarizes the molecular mechanisms underlying cellular senescence and its possible effects on a variety of renal diseases. We will also discuss the therapeutic approaches based on the regulation of senescent and SASP blockade, which is considered as a promising strategy for the management of renal diseases.
Collapse
Affiliation(s)
- Bingru Zhou
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Ying Wan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Rong Chen
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Zhang
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- School of Basic Medical Sciences, Institute for Cancer Medicine, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Siwen Li
- Department of Physiology, Southwest Medical University, Luzhou, China
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Zou
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, Maxwell AP. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the Heritability Puzzle. Front Genet 2019; 10:453. [PMID: 31214239 PMCID: PMC6554557 DOI: 10.3389/fgene.2019.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem with an increasing prevalence partly driven by aging population structure. Both genomic and environmental factors contribute to this complex heterogeneous disease. CKD heritability is estimated to be high (30-75%). Genome-wide association studies (GWAS) and GWAS meta-analyses have identified several genetic loci associated with CKD, including variants in UMOD, SHROOM3, solute carriers, and E3 ubiquitin ligases. However, these genetic markers do not account for all the susceptibility to CKD, and the causal pathways remain incompletely understood; other factors must be contributing to the missing heritability. Less investigated biological factors such as telomere length; mitochondrial proteins, encoded by nuclear genes or specific mitochondrial DNA (mtDNA) encoded genes; structural variants, such as copy number variants (CNVs), insertions, deletions, inversions and translocations are poorly covered and may explain some of the missing heritability. The sex chromosomes, often excluded from GWAS studies, may also help explain gender imbalances in CKD. In this review, we outline recent findings on molecular biomarkers for CKD (telomeres, CNVs, mtDNA variants, sex chromosomes) that typically have received less attention than gene polymorphisms. Shorter telomere length has been associated with renal dysfunction and CKD progression, however, most publications report small numbers of subjects with conflicting findings. CNVs have been linked to congenital anomalies of the kidney and urinary tract, posterior urethral valves, nephronophthisis and immunoglobulin A nephropathy. Information on mtDNA biomarkers for CKD comes primarily from case reports, therefore the data are scarce and diverse. The most consistent finding is the A3243G mutation in the MT-TL1 gene, mainly associated with focal segmental glomerulosclerosis. Only one GWAS has found associations between X-chromosome and renal function (rs12845465 and rs5987107). No loci in the Y-chromosome have reached genome-wide significance. In conclusion, despite the efforts to find the genetic basis of CKD, it remains challenging to explain all of the heritability with currently available methods and datasets. Although additional biomarkers have been investigated in less common suspects such as telomeres, CNVs, mtDNA and sex chromosomes, hidden heritability in CKD remains elusive, and more comprehensive approaches, particularly through the integration of multiple -"omics" data, are needed.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ryan Skelly
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Laura Jane Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
9
|
Jin G, Liang Y, Yan X, Zhang L, Li Z, Yin A, Wang X, Tian P. Association between the <b><i>ACYP2</i></b> Polymorphisms and IgAN Risk in the Chinese Han Population. Kidney Blood Press Res 2019; 44:810-822. [DOI: 10.1159/000501703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background/Aims:</i></b> The association between <i>ACYP2</i>(Acylphosphatase 2) polymorphisms and immunoglobulin A nephropathy (IgAN) risk in the Chinese Han population remains unclear. We aimed to evaluate the association between <i>ACYP2</i> polymorphisms and IgAN risk by performing a case-control study. <b><i>Methods:</i></b> Eleven <i>ACYP2</i> single nucleotide polymorphisms (SNPs) from 416 IgAN patients and 495 healthy controls were genotyped using the Sequenom MassARRAY platform. Odds ratio (OR) and 95% confidence interval (CI) were calculated to evaluate the association of <i>ACYP2</i> polymorphisms with IgAN risk. <b><i>Results:</i></b> We observed that rs843720 was significantly associated with an increased risk of IgAN (allele G: OR = 1.23, 95% CI: 1.01–1.49, <i>p</i> = 0.036; dominant model: OR = 1.55, 95% CI: 1.01–2.37, <i>p =</i>0.044; log-additive model: OR = 1.43, 95% CI: 1.04–1.95, <i>p</i> = 0.026) before Bonferroni correction. The SNP rs12615793 was also significantly associated with an increased IgAN risk in the recessive model (OR = 3.33, 95% CI: 1.05–10.51, <i>p</i> = 0.042) before Bonferroni correction. <b><i>Conclusion:</i></b> These findings suggested that polymorphisms (rs843720 and rs12615793) of <i>ACYP2</i> may be pivotal in the development of IgAN. However, more functional and association studies with larger sample sizes should be performed to further validate our results in the future.
Collapse
|
10
|
Jiang H, Liang L, Qin J, Lu Y, Li B, Wang Y, Lin C, Zhou Q, Feng S, Yip SH, Xu F, Lai EY, Wang J, Chen J. Functional networks of aging markers in the glomeruli of IgA nephropathy: a new therapeutic opportunity. Oncotarget 2018; 7:33616-26. [PMID: 27127888 PMCID: PMC5085107 DOI: 10.18632/oncotarget.9033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy(IgAN) is the most common primary glomerular disease in China. Primary infections always occur before IgAN. However, the pathology of IgAN is still unclear. Previously we found that LL37, a protein secreted by senescent cells, was specific for the progression of IgAN, and also played a role in the neutrophil function. So we hypothesized that the infiltration of neutrophils, inflammation factors, and aging markers, which were modulated by functional networks, induced the immune response and renal injury. RNA-Sequencing (RNA-seq) can be used to study the whole transcriptome and detect splicing variants that are expressed in a specific cell type or tissue. We separate glomerulus from the renal biopsy tissues. After RNA extraction, the sequences were analyzed with Illumina HiSeq 2000/2500. 381 genes with differential expression between the IgAN patients and the healthy controls were identified. Only PLAU, JUN, and FOS were related to DNA damage, telomere dysfunction-induced aging markers, neutrophil function and IgA nephropathy. The networks showed the possibility of these genes being connected. We conclude that DNA damage and telomere dysfunction could play important roles in IgA nephropathy. In addition, neutrophils are also important factors in this disease. The networks of these markers showed the mechanism pathways that are involved in the duration of the occurrence and progression of IgA nephropathy and might be a new therapeutic opportunity for disease treatment.
Collapse
Affiliation(s)
- Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Ludan Liang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yingying Lu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Bingjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Chuan Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Shun H Yip
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Xu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - En Yin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Junwen Wang
- Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| |
Collapse
|
11
|
Ameh OI, Okpechi IG, Dandara C, Kengne AP. Association Between Telomere Length, Chronic Kidney Disease, and Renal Traits: A Systematic Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:143-155. [PMID: 28253088 DOI: 10.1089/omi.2016.0180] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Telomere length (TL) is an important biological variable that can influence a variety of disease-related complex traits as well as host-environment interactions such as drug and nutritional responses. Chronic kidney disease (CKD) is a common global health challenge especially with the currently aging world population. We conducted a PubMed database search according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines for systematic reviews. Studies in adults (18 years and above) in which TL was determined and correlated with CKD, renal traits, and function were included, while animal model studies were excluded. Nine studies comprising 7829 participants, published between 2005 and 2016, met the inclusion criteria. These included eight observational studies (six being prospective), and one clinical trial. Participants in two studies were diabetic patients with varying stages of CKD, and nondialysis chronic glomerulonephritis CKD patients in two other studies. TL measurements used polymerase chain reaction in five studies, terminal restriction fragmentation in three studies, and quantitative fluorescence in situ hybridization in one study. Short TL was independently associated with increased risk of prevalent microalbuminuria in diabetic men with CKD (p = 0.007). Among CKD patients with heterogeneous etiologies, however, there was an unadjusted lower risk (p < 0.001). Short TL was significantly associated with CKD progression among smokers (p = 0.001) and diabetic patients (p = 0.03). On the other hand, long TL was paradoxically associated with longer diagnosed duration of moderate CKD. We postulate that shortening TL might be associated with CKD prevalence/occurrence or declining kidney function, but this association is likely offset by the cellular telomere reparative process in those surviving longer with CKD. This systematic review underscores the need for future omics and human genetics research to delineate the contribution of TL to CKD, renal dysfunction, and related health outcomes. Telomeres and telomerase activity hold great promise for CKD risk stratification and personalized medicine.
Collapse
Affiliation(s)
| | - Ikechi G Okpechi
- 2 Division of Nephrology and Hypertension, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 3 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - André-Pascal Kengne
- 4 Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town , Cape Town, South Africa
| |
Collapse
|
12
|
Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 2016; 13:77-89. [DOI: 10.1038/nrneph.2016.183] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Matjusaitis M, Chin G, Sarnoski EA, Stolzing A. Biomarkers to identify and isolate senescent cells. Ageing Res Rev 2016; 29:1-12. [PMID: 27212009 DOI: 10.1016/j.arr.2016.05.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan. To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells.
Collapse
Affiliation(s)
- Mantas Matjusaitis
- Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, England, UK
| | - Greg Chin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ethan Anders Sarnoski
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Alexandra Stolzing
- Institute IZBI, University of Leipzig, Leipzig, Germany; Loughborough University, Loughborough, England, UK.
| |
Collapse
|