1
|
Habde SV, Punniyamoorthy D, Jegadeesan S. Mutation profiling through whole genome sequencing of electron beam-induced black gram ( Vigna mungo L. Hepper) mutant. Int J Radiat Biol 2024:1-18. [PMID: 39374376 DOI: 10.1080/09553002.2024.2409666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Black gram (Vigna mungo [L.] Hepper) is an important annual legume with great economic, nutritional and ecological significance. Novel variations through induced mutagenesis can accelerate narrow genetic base-impeded black gram improvement. This is a first study on characterization of genome-wide mutation spectrum induced by electron beam (EB). MATERIALS AND METHODS Black gram genotype 'Pant U-31' was irradiated with 400 Gy EB generated in a 10 MeV LINAC. A stable mutant PM-32 (M6) was re-sequenced by combining Illumina (BIOO Scientific, Inc., Austin, TX) and Nanopore Technologies (Oxford, UK). Variants were predicted in reference to the available whole genome scaffold level draft assembly of parent 'Pant U-31'. RESULTS Genome analysis predicted a total of 76,893 genes of which 58,517 were annotated. The identified variants totaling 728,161, largely comprised (91.56%) of single base substitutions (SBSs) with a transition (Ti) to transversion (Tv) ratio of 1.95. Of the indels constituting 8.44% of total induced variants, insertions accounted for 4.29%, with preponderance of multiple bases (53.63%) and 2-5 bp insertions as the major class (33.71%). Multiple-base deletions (2-5 bases) formed the bulk (31.14%) of the total deletions. The genic variants (2438) with estimated high and moderate effects were located within 1271 predicted genes. A higher number of mutations were observed on chromosomes Vm1 (588) and Vm3 (428) with the highest frequency on chromosome Vm3 (every 0.07 Mb). CONCLUSIONS Our study reiterated the mutagenic utility of EB for inducing SBSs and small indels genome-wide. The knowledge gained from SNP-level profiling of EB-induced mutations can expedite comparative mutation breeding studies in legumes.
Collapse
Affiliation(s)
- Sonali Vijay Habde
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Souframanien Jegadeesan
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
2
|
Kitamura S, Satoh K, Hase Y, Yoshihara R, Oono Y, Shikazono N. Differential contributions of double-strand break repair pathways to DNA rearrangements following the irradiation of Arabidopsis seeds and seedlings with ion beams. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:445-458. [PMID: 39312204 DOI: 10.1111/tpj.16955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/25/2024]
Abstract
DNA rearrangements, including inversions, translocations, and large insertions/deletions (indels), are crucial for crop evolution, domestication, and improvement. The rearrangements are frequently induced by ion beams via the mis-repair of DNA double-strand breaks (DSBs). Unfortunately, how ion beam-induced DSBs are repaired has not been comprehensively analyzed and the mechanisms underlying DNA rearrangements remain unclear. In this study, clonal sectors originating from single mutated cells in carbon ion-irradiated plants were used for whole-genome sequencing analyses after Arabidopsis seeds and seedlings were irradiated. Comparative analyses of the induced mutations (e.g., size and frequency of indels and microhomology at the junctions of the rearrangements) in the irradiated materials suggested that the broken/rejoined DSB ends were more extensively processed in seedlings than in seeds. A mutation to canonical non-homologous end-joining (c-NHEJ), which is a DSB repair pathway with minimal processing of DSB ends, increased the sensitivity to ion beams more in the seeds than in the seedlings, which was consistent with the junction analysis results, indicative of the minor contribution of c-NHEJ to the carbon ion-induced DSB repair in seedlings. Considering the characteristics of the large templated insertions in irradiated seedlings, ion-beam-induced DSBs in seedlings are likely repaired primarily by a polymerase theta-mediated pathway. Polymerase theta-deficient seedlings were more sensitive to ion beams than the c-NHEJ-deficient seedlings, consistent with this hypothesis. This study revealed the key characteristics of ion beam-induced DSBs and the associated repair mechanisms related to the physiological status of the irradiated materials, with implications for elucidating the occurrence and induction of rearrangements.
Collapse
Affiliation(s)
- Satoshi Kitamura
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Katsuya Satoh
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Yoshihiro Hase
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Ryouhei Yoshihara
- Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, 338-8570, Japan
| | - Yutaka Oono
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Naoya Shikazono
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), Kizugawa, 619-0215, Japan
| |
Collapse
|
3
|
Puchta H. Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun? ABIOTECH 2024; 5:231-238. [PMID: 38974871 PMCID: PMC11224193 DOI: 10.1007/s42994-023-00130-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 07/09/2024]
Abstract
Some 20 years ago, the EU introduced complex regulatory rules for the growth of transgenic crops, which resulted in a de facto ban to grow these plants in fields within most European countries. With the rise of novel genome editing technologies, it has become possible to improve crops genetically in a directed way without the need for incorporation of foreign genes. Unfortunately, in 2018, the European Court of Justice ruled that such gene-edited plants are to be regulated like transgenic plants. Since then, European scientists and breeders have challenged this decision and requested a revision of this outdated law. Finally, after 5 years, the European Commission has now published a proposal on how, in the future, to regulate crops produced by new breeding technologies. The proposal tries to find a balance between the different interest groups in Europe. On one side, genetically modified plants, which cannot be discerned from their natural counterparts, will exclusively be used for food and feed and are-besides a registration step-not to be regulated at all. On the other side, plants expressing herbicide resistance are to be excluded from this regulation, a concession to the strong environmental associations and NGOs in Europe. Moreover, edited crops are to be excluded from organic farming to protect the business interests of the strong organic sector in Europe. Nevertheless, if this law passes European parliament and council, unchanged, it will present a big step forward toward establishing a more sustainable European agricultural system. Thus, it might soon be possible to develop and grow crops that are more adapted to global warming and whose cultivation will require lower amounts of pesticides. However, there is still a long way to go until the law is passed. Too often, the storm of arguments raised by the opponents, based on irrational fears of mutations and a naive understanding of nature, has fallen on fruitful ground in Europe.
Collapse
Affiliation(s)
- Holger Puchta
- Department of Molecular Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Punniyamoorthy D, Souframanien J. Gamma-rays induced genome wide stable mutations in cowpea deciphered through whole genome sequencing. Int J Radiat Biol 2024; 100:1072-1084. [PMID: 38683196 DOI: 10.1080/09553002.2024.2345087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Gamma rays are the most widely exploited physical mutagen in plant mutation breeding. They are known to be involved in the development of more than 60% of global cowpea (Vigna unguiculata (L.) Walp.) mutant varieties. Nevertheless, the nature and type of genome-wide mutations induced by gamma rays have not been studied in cowpea and therefore, the present investigation was undertaken. MATERIALS AND METHODS Genomic DNAs from three stable gamma rays-induced mutants (large seed size, small seed size and disease resistant mutant) of cowpea cultivar 'CPD103' in M6 generation along with its progenitor were used for Illumina-based whole-genome resequencing. RESULTS Gamma rays induced a relatively higher frequency (88.9%) of single base substitutions (SBSs) with an average transition to transversion ratio (Ti/Tv) of 3.51 in M6 generation. A > G transitions, including its complementary T > C transitions, predominated the transition mutations, while all four types of transversion mutations were detected with frequencies over 6.5%. Indels (small insertions and deletions) constituted about 11% of the total induced variations, wherein small insertions (6.3%) were relatively more prominent than small deletions (4.8%). Among the indels, single-base indels and, in particular, those involving A/T bases showed a preponderance, albeit indels of up to three bases were detected in low proportions. Distributed across all 11 chromosomes, only a fraction of SBSs (19.45%) and indels (20.2%) potentially altered the encoded amino acids/peptides. The inherent mutation rate induced by gamma rays in cowpea was observed to be in the order of 1.4 × 10-7 per base pair in M6 generation. CONCLUSION Gamma-rays with a greater tendency to induce SBSs and, to a lesser extent, indels could be efficiently and effectively exploited in cowpea mutation breeding.
Collapse
Affiliation(s)
| | - Jegadeesan Souframanien
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
5
|
Havlickova L, He Z, Berger M, Wang L, Sandmann G, Chew YP, Yoshikawa GV, Lu G, Hu Q, Banga SS, Beaudoin F, Bancroft I. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:738-750. [PMID: 37921406 PMCID: PMC10893948 DOI: 10.1111/pbi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | - Lihong Wang
- Department of BiologyUniversity of YorkYorkUK
| | | | | | - Guilherme V. Yoshikawa
- Department of BiologyUniversity of YorkYorkUK
- Present address:
School of Agriculture, Food and Wine, Waite Research InstituteUniversity of AdelaideGlen OsmondSAAustralia
| | - Guangyuan Lu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
- College of Biology and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Qiong Hu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
| | - Surinder S. Banga
- Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
| | | | | |
Collapse
|
6
|
Till BJ. Identification of Induced Copy Number Variation from Low Coverage Sequence Data. Methods Mol Biol 2024; 2787:141-152. [PMID: 38656487 DOI: 10.1007/978-1-0716-3778-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.
Collapse
Affiliation(s)
- Bradley J Till
- Veterinary Genetics Laboratory, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Baadu R, Chong KP, Gansau JA, Mohamed Zin MR, Dayou J. A systematic review on physical mutagens in rice breeding in Southeast Asia. PeerJ 2023; 11:e15682. [PMID: 37868055 PMCID: PMC10590103 DOI: 10.7717/peerj.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/14/2023] [Indexed: 10/24/2023] Open
Abstract
In the 1920s, Lewis Stadler initiated the introduction of permanent improvements to the genetic makeup of irradiated plants. Since then, studies related to breeding mutations have grown, as efforts have been made to expand and improve crop productivity and quality. Stadler's discovery began with x-rays on corn and barley and later extended to the use of gamma-rays, thermal, and fast neutrons in crops. Radiation has since been shown to be an effective and unique method for increasing the genetic variability of species, including rice. Numerous systematic reviews have been conducted on the impact of physical mutagens on the production and grain quality of rice in Southeast Asia. However, the existing literature still lacks information on the type of radiation used, the rice planting materials used, the dosage of physical mutagens, and the differences in mutated characteristics. Therefore, this article aims to review existing literature on the use of physical mutagens in rice crops in Southeast Asian countries. Guided by the PRISMA Statement review method, 28 primary studies were identified through a systematic review of the Scopus, Science Direct, Emerald Insight, Multidisciplinary Digital Publishing, and MDPI journal databases published between 2016 and 2020. The results show that 96% of the articles used seeds as planting materials, and 80% of the articles focused on gamma-rays as a source of physical mutagens. The optimal dosage of gamma-rays applied was around 100 to 250 Gy to improve plant development, abiotic stress, biochemical properties, and nutritional and industrial quality of rice.
Collapse
Affiliation(s)
- Rosina Baadu
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jualang Azlan Gansau
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Jedol Dayou
- Energy, Vibration and Sound Research Group (e-VIBS), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
8
|
Zou M, Tong S, Zou T, Wang X, Wu L, Wang J, Guo T, Xiao W, Wang H, Huang M. A new method for mutation inducing in rice by using DC electrophoresis bath and its mutagenic effects. Sci Rep 2023; 13:6707. [PMID: 37185291 PMCID: PMC10126576 DOI: 10.1038/s41598-023-33742-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Mutation breeding is a significant means of increasing breeding efficiency and accelerating breeding process. In present study, we explored a new method for mutations inducing in rice (Oryza sativa L.) by using direct current electrophoresis bath (DCEB). The results showed that 20 mM NaCl solution is the optimal buffer, and the mortality of rice seeds followed an upward trend with increasing voltage and processing time of DCEB. By exploring the mutagenic effects of γ-irradiation and DCEB on seed vigor and physiological damages, we found that the physiological damages induced by DCEB on seed vigor were significant compared with that by γ-irradiation. We screened two mutants with low filled grain percentage and one mutant with abnormal hull from the M2 generations. These three mutants were confirmed to be authentic mutants based on 48 SSR markers followed by the protocol NY/T 1433-2014. Whole-genome resequencing detected a total of 503 and 537 polymorphisms in the two mutants, respectively, and the DCEB mutagenesis induced mainly InDel variants, while the exon region of mutant genes occupied a large proportion, especially the SNP variants, which occupied about 20% of the mutation sites in the exon region.
Collapse
Affiliation(s)
- Minmin Zou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Sun Tong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ting Zou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xinyi Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Linxuan Wu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiafeng Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tao Guo
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wuming Xiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ming Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
9
|
Jankowicz-Cieslak J, Hofinger BJ, Jarc L, Junttila S, Galik B, Gyenesei A, Ingelbrecht IL, Till BJ. Spectrum and Density of Gamma and X-ray Induced Mutations in a Non-Model Rice Cultivar. PLANTS (BASEL, SWITZERLAND) 2022; 11:3232. [PMID: 36501272 PMCID: PMC9741009 DOI: 10.3390/plants11233232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.
Collapse
Affiliation(s)
- Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Bernhard J. Hofinger
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Luka Jarc
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Sini Junttila
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku, Tykistökatu 6, 20520 Turku, Finland
- Medical Bioinformatics Centre, Turku Bioscience Centre, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Bence Galik
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility Szentágothai Research Centre, University of Pécs, H-7622 Pecs, Hungary
| | - Attila Gyenesei
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility Szentágothai Research Centre, University of Pécs, H-7622 Pecs, Hungary
| | - Ivan L. Ingelbrecht
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Bradley J. Till
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
- Veterinary Genetics Laboratory, University of California, Old Davis Road, Davis, CA 95616, USA
| |
Collapse
|
10
|
Martínez-Fortún J, Phillips DW, Jones HD. Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing. Front Genome Ed 2022; 4:937853. [PMID: 36072906 PMCID: PMC9441798 DOI: 10.3389/fgeed.2022.937853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional breeding has successfully selected beneficial traits for food, feed, and fibre crops over the last several thousand years. The last century has seen significant technological advancements particularly in marker assisted selection and the generation of induced genetic variation, including over the last few decades, through mutation breeding, genetic modification, and genome editing. While regulatory frameworks for traditional varietal development and for genetic modification with transgenes are broadly established, those for genome editing are lacking or are still evolving in many regions. In particular, the lack of "foreign" recombinant DNA in genome edited plants and that the resulting SNPs or INDELs are indistinguishable from those seen in traditional breeding has challenged development of new legislation. Where products of genome editing and other novel breeding technologies possess no transgenes and could have been generated via traditional methods, we argue that it is logical and proportionate to apply equivalent legislative oversight that already exists for traditional breeding and novel foods. This review analyses the types and the scale of spontaneous and induced genetic variation that can be selected during traditional plant breeding activities. It provides a base line from which to judge whether genetic changes brought about by techniques of genome editing or other reverse genetic methods are indeed comparable to those routinely found using traditional methods of plant breeding.
Collapse
Affiliation(s)
| | | | - Huw D. Jones
- IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
11
|
Ji HJ, Jang AY, Song JY, Ahn KB, Han SH, Bang SJ, Jung HK, Hur J, Seo HS. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front Immunol 2022; 13:931052. [PMID: 35898510 PMCID: PMC9310569 DOI: 10.3389/fimmu.2022.931052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a leading cause of food-borne diseases in humans worldwide, resulting in severe morbidity and mortality. They are carried asymptomatically in the intestine or gallbladder of livestock, and are transmitted predominantly from animals to humans via the fecal-oral route. Thus, the best preventive strategy is to preemptively prevent transmission to humans by vaccinating livestock. Live attenuated vaccines have been mostly favored because they elicit both cellular and humoral immunity and provide long-term protective immunity. However, developing these vaccines is a laborious and time-consuming process. Therefore, most live attenuated vaccines have been mainly used for phenotypic screening using the auxotrophic replica plate method, and new types of vaccines have not been sufficiently explored. In this study, we used Radiation-Mutation Enhancement Technology (R-MET) to introduce a wide variety of mutations and attenuate the virulence of Salmonella spp. to develop live vaccine strains. The Salmonella Typhimurium, ST454 strain (ST WT) was irradiated with Cobalt60 gamma-irradiator at 1.5 kGy for 1 h to maximize the mutation rate, and attenuated daughter colonies were screened using in vitro macrophage replication capacity and in vivo mouse infection assays. Among 30 candidates, ATOMSal-L6, with 9,961-fold lower virulence than the parent strain (ST454) in the mouse LD50 model, was chosen. This vaccine candidate was mutated at 71 sites, and in particular, lost one bacteriophage. As a vaccine, ATOMSal-L6 induced a Salmonella-specific IgG response to provide effective protective immunity upon intramuscular vaccination of mice. Furthermore, when mice and sows were orally immunized with ATOMSal-L6, we found a strong protective immune response, including multifunctional cellular immunity. These results indicate that ATOMSal-L6 is the first live vaccine candidate to be developed using R-MET, to the best of our knowledge. R-MET can be used as a fast and effective live vaccine development technology that can be used to develop vaccine strains against emerging or serotype-shifting pathogens.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok Jin Bang
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| |
Collapse
|
12
|
Tan Y, Li S. Generation of Mutants by Combined Treatment of Physical and Chemical Mutagens in Rice. Methods Mol Biol 2022; 2484:137-142. [PMID: 35461450 DOI: 10.1007/978-1-0716-2253-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mutants can be generated by physical or chemical mutagens. The procedure includes mutagenesis treatment, post-treatment, planting of M1, harvest of M1, planting of M2, phenotypic observation or mutation scanning in M2 plants. Here we describe the combined treatment of the rice seeds from the indica variety Tenuo with 137Cs gamma rays at 100 Gy and a chemical mutagen-ethyl methanesulfonate (EMS). Theoretically, the method can be used to study various plant biological processes which include plant gametogenesis in addition to the generation of mutants by straightforward physiological screens. As an example of the procedure, we screened for mutants resistant to imazethapyr, an herbicide which can kill grass weeds.
Collapse
Affiliation(s)
- Yuanyuan Tan
- The New Countryside Development Institute at Zhejiang University, Hangzhou, China.
| | - Shan Li
- National Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 2021; 49:773-781. [PMID: 34825322 DOI: 10.1007/s11033-021-06975-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Millets are small seeded cereal crops predominantly cultivated and consumed by resource-poor farmers in the semi-arid tropics of Asia and Africa. Millets possess rich nutrients and a climate resilience property when compared to the other cereals such as rice and wheat. Millet improvement using modern genetic and genomic tools is falling behind other cereal crops due to their cultivation being restricted to less developed countries. Genome editing tools have been successfully applied to major cereal crops and, as a result, many key traits have been introduced into rice, wheat and maize. However, genome editing tools have not yet been used for most millets although they possess rich nutrients. The foxtail millet is the only millet utilised up to now for genome editing works. Limited genomic resources and lack of efficient transformation systems may slow down genome editing in millets. As millets possess many important traits of agricultural importance, high resolution studies with genome editing tools will help to understand the specific mechanism and transfer such traits to major cereals in the future. This review covers the current status of genome editing studies in millets and discusses the future prospects of genome editing in millets to understand key traits of nutrient fortification and develop climate resilient crops in the future.
Collapse
|
14
|
Zhang J, Peng Z, Liu Q, Yang G, Zhou L, Li W, Wang H, Chen Z, Guo T. Time Course Analysis of Genome-Wide Identification of Mutations Induced by and Genes Expressed in Response to Carbon Ion Beam Irradiation in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12091391. [PMID: 34573373 PMCID: PMC8469171 DOI: 10.3390/genes12091391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Heavy-ion irradiation is a powerful mutagen and is widely used for mutation breeding. In this study, using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques, we comprehensively characterized these dynamic changes caused by mutations at three time points (48, 96, and 144 h after irradiation) and the expression profiles of rice seeds irradiated with C ions at two doses. Subsequent WGS analysis revealed that more mutations were detected in response to 40 Gy carbon ion beam (CIB) irradiation than 80 Gy of CIB irradiation at the initial stage (48 h post-irradiation). In the mutants generated from both irradiation doses, single-base substitutions (SBSs) were the most frequent type of mutation induced by CIB irradiation. Among the mutations, the predominant ones were C:T and A:G transitions. CIB irradiation also induced many short InDel mutations. RNA-seq analysis at the three time points showed that the number of differentially expressed genes (DEGs) was highest at 48 h post-irradiation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs showed that the "replication and repair" pathway was enriched specifically 48 h post-irradiation. These results indicate that the DNA damage response (DDR) and the mechanism of DNA repair tend to quickly start within the initial stage (48 h) after irradiation.
Collapse
Affiliation(s)
- Jian Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Ziai Peng
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Qiling Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (L.Z.); (W.L.)
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (L.Z.); (W.L.)
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
- Correspondence: ; Tel./Fax: +86-20-3860-4903
| |
Collapse
|
15
|
Zheng Y, Li S, Huang J, Fu H, Zhou L, Furusawa Y, Shu Q. Identification and characterization of inheritable structural variations induced by ion beam radiations in rice. Mutat Res 2021; 823:111757. [PMID: 34271440 DOI: 10.1016/j.mrfmmm.2021.111757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/01/2022]
Abstract
High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M4 plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (40Ar18+), carbon (12C6+) and neon (20Ne10+) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.
Collapse
Affiliation(s)
- Yunchao Zheng
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shan Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| | - Jianzhong Huang
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Haowei Fu
- Jiaxing Academy of Agricultural Science, Jiaxing, Zhejiang, 314016, China.
| | - Libin Zhou
- Biophysics Group, Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000, China.
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Graham N, Patil GB, Bubeck DM, Dobert RC, Glenn KC, Gutsche AT, Kumar S, Lindbo JA, Maas L, May GD, Vega-Sanchez ME, Stupar RM, Morrell PL. Plant Genome Editing and the Relevance of Off-Target Changes. PLANT PHYSIOLOGY 2020; 183:1453-1471. [PMID: 32457089 PMCID: PMC7401131 DOI: 10.1104/pp.19.01194] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/07/2020] [Indexed: 05/12/2023]
Abstract
Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.
Collapse
Affiliation(s)
- Nathaniel Graham
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, Minnesota 55108
- Pairwise, Durham, North Carolina 27709
| | - Gunvant B Patil
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | | | | | | | | | | | | | - Luis Maas
- Enza Zaden Research USA, San Juan Bautista, California 95045
| | | | | | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
17
|
Xiong H, Guo H, Xie Y, Gu J, Zhao L, Zhao S, Ding Y, Kong F, Sui L, Liu L. Comparative transcriptome analysis of two common wheat varieties induced by 7Li-ion beam irradiation reveals mutation hotspot regions and associated pathways. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Mutagenic Effect of Three Ion Beams on Rice and Identification of Heritable Mutations by Whole Genome Sequencing. PLANTS 2020; 9:plants9050551. [PMID: 32357388 PMCID: PMC7284785 DOI: 10.3390/plants9050551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
High-energy ion beams are known to be an effective and unique type of physical mutagen in plants. However, no study on the mutagenic effect of argon (Ar) ion beam radiation on rice has been reported. Genome-wide studies on induced mutations are important to comprehend their characteristics for establishing knowledge-based protocols for mutation induction and breeding, which are still very limited in rice. The present study aimed to investigate the mutagenic effect of three ion beams, i.e., Ar, carbon (C) and neon (Ne) on rice and identify and characterize heritable induced mutations by the whole genome sequencing of six M4 plants. Dose-dependent damage effects were observed on M1 plants, which were developed from ion beam irradiated dry seeds of two indica (LH15, T23) and two japonica (DS551, DS48) rice lines. High frequencies of chlorophyll-deficient seedlings and male-sterile plants were observed in all M2 populations (up to ~30% on M1 plant basis); plants from the seeds of different panicles of a common M1 plant appeared to have different mutations; the whole genome-sequencing demonstrated that there were 236–453 mutations in each of the six M4 plants, including single base substitutions (SBSs) and small insertion/deletions (InDels), with the number of SBSs ~ 4–8 times greater than that of InDels; SBS and InDel mutations were distributed across different genomic regions of all 12 chromosomes, however, only a small number of mutations (0–6) were present in exonic regions that might have an impact on gene function. In summary, the present study demonstrates that Ar, C and Ne ion beam radiation are all effective for mutation induction in rice and has revealed at the genome level the characteristics of the mutations induced by the three ion beams. The findings are of importance to the efficient use of ion beam radiation for the generation and utilization of mutants in rice.
Collapse
|
19
|
Zheng Y, Li S, Huang J, Fan L, Shu Q. Identification and Characterization of γ-Ray-Induced Mutations in Rice Cytoplasmic Genomes by Whole-Genome Sequencing. Cytogenet Genome Res 2020; 160:100-109. [PMID: 32146470 DOI: 10.1159/000506033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 11/19/2022] Open
Abstract
Chloroplasts and mitochondria are semi-autonomous organelles and have their own genomes (cytoplasmic genomes). Physical radiations (e.g., γ-rays) have been widely used in artificial mutation induction for plant germplasm enhancement and for breeding new cultivars. However, little is known at the genomic level about which kind of cytoplasmic mutations and/or characteristics could be induced in plants. The present study aimed to investigate the type, number, and distribution of inheritable cytoplasmic mutations induced by γ-rays in rice (Oryza sativa L.). Six plants were selected from the 2nd generation (M2) populations after γ-ray (137Cs) irradiation of the rice cultivar Nipponbare, 2 each for the 3 irradiation doses (150, 250, and 350 Gy), and their genomes were sequenced on an Illumina platform. Together with the whole-genome sequencing data of 3 external Nipponbare control plants, single-base substitutions (SBSs) and insertions/deletions (InDels) in chloroplast (cp) and mitochondrial (mt) genomes were identified and analyzed in-depth using bioinformatic tools. The majority of SBSs and InDels identified were background mutations in the 6 M2 plants, and the number of induced mutations varied greatly among the plants. Most induced mutations were present in a heterogeneous state, reflecting the fact that multiple cp and mt copies existed in the progenitor cells. The induced mutations were distributed in different genomic regions in the 6 M2 plants, including exonic regions, but none of them was predicted to cause nonsynonymous mutations or frameshifts. Our study thus revealed, at the genomic level, characteristics of cytoplasmic mutations induced by γ-rays in rice.
Collapse
|
20
|
Xiong H, Zhou C, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Transcriptome sequencing reveals hotspot mutation regions and dwarfing mechanisms in wheat mutants induced by γ-ray irradiation and EMS. JOURNAL OF RADIATION RESEARCH 2020; 61:44-57. [PMID: 31825082 PMCID: PMC6976738 DOI: 10.1093/jrr/rrz075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/29/2019] [Accepted: 10/16/2019] [Indexed: 05/26/2023]
Abstract
Induced mutation is an important approach for creating novel plant germplasms. The introduction of dwarf or semi-dwarf genes into wheat has led to great advancements in yield improvement. In this study, four elite dwarf wheat mutants, named dm1-dm4, induced from γ-ray irradiation or ethyl methanesulfonate (EMS) mutagenesis, were used to identify transcriptome variations and dwarfing mechanisms. The results showed that the hotspot regions of mutations distributed on the chromosomes were consistent among the four mutant lines and these regions were mainly located around the 50, 360 and 400 Mb positions of chromosome 1A and the distal regions of chromosomes 2A and 2BL. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that 'protein processing in endoplasmic reticulum' was the most common significantly enriched pathway based on the differentially expressed genes (DEGs) between wildtype (WT) and the mutants. Notably, 18 out of 20 genes involved in this process encode heat shock proteins (HSPs). The results implied that HSPs might participate in wheat dwarfism response and function in the dwarfism process through protein folding and/or degradation. Moreover, seven genes in dm4 involved in modulating auxin levels were down-regulated and dm4 was more sensitive to auxin treatment compared with WT, indicating the important roles of auxin in regulation of dwarf phenotype in dm4. This study not only identified transcriptome sequence variation induced by physical and chemical mutagenesis but also revealed potential dwarfing mechanisms in the wheat mutant lines.
Collapse
Affiliation(s)
- Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Chunyun Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
| |
Collapse
|
21
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Comparison and Characterization of Mutations Induced by Gamma-Ray and Carbon-Ion Irradiation in Rice ( Oryza sativa L.) Using Whole-Genome Resequencing. G3-GENES GENOMES GENETICS 2019; 9:3743-3751. [PMID: 31519747 PMCID: PMC6829151 DOI: 10.1534/g3.119.400555] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gamma-rays are the most widely used mutagenic radiation in plant mutation breeding, but detailed characteristics of mutated DNA sequences have not been clarified sufficiently. In contrast, newly introduced physical mutagens, e.g., heavy-ion beams, have attracted geneticists’ and breeders’ interest and many studies on their mutation efficiency and mutated DNA characteristics have been conducted. In this study, we characterized mutations induced by gamma rays and carbon(C)-ion beams in rice (Oryza sativa L.) mutant lines at M5 generation using whole-genome resequencing. On average, 57.0 single base substitutions (SBS), 17.7 deletions, and 5.9 insertions were detected in each gamma-ray-irradiated mutant, whereas 43.7 single SBS, 13.6 deletions, and 5.3 insertions were detected in each C-ion-irradiated mutant. The structural variation (SV) analysis detected 2.0 SVs (including large deletions or insertions, inversions, duplications, and reciprocal translocations) on average in each C-ion-irradiated mutant, while 0.6 SVs were detected on average in each gamma-ray-irradiated mutant. Furthermore, complex SVs presumably having at least two double-strand breaks (DSBs) were detected only in C-ion-irradiated mutants. In summary, gamma-ray irradiation tended to induce larger numbers of small mutations than C-ion irradiation, whereas complex SVs were considered to be the specific characteristics of the mutations induced by C-ion irradiation, which may be due to their different radiation properties. These results could contribute to the application of radiation mutagenesis to plant mutation breeding.
Collapse
|
23
|
Tan C, Zhang XQ, Wang Y, Wu D, Bellgard MI, Xu Y, Shu X, Zhou G, Li C. Characterization of genome-wide variations induced by gamma-ray radiation in barley using RNA-Seq. BMC Genomics 2019; 20:783. [PMID: 31664908 PMCID: PMC6819550 DOI: 10.1186/s12864-019-6182-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Artificial mutagenesis not only provides a new approach to increase the diversity of desirable traits for breeding new varieties but are also beneficial for characterizing the genetic basis of functional genes. In recent decades, many mutation genes have been identified which are responsible for phenotype changes in mutants in various species including Arabidopsis and rice. However, the mutation feature in induced mutants and the underlying mechanisms of various types of artificial mutagenesis remain unclear. Results In this study, we adopted a transcriptome sequencing strategy to characterize mutations in coding regions in a barley dwarf mutant induced by gamma-ray radiation. We detected 1193 genetic mutations in gene transcription regions introduced by gamma-ray radiation. Interestingly, up to 97% of the gamma irradiation mutations were concentrated in certain regions in chromosome 5H and chromosome 7H. Of the 26,745 expressed genes, 140 were affected by gamma-ray radiation; their biological functions included cellular and metabolic processes. Conclusion Our results indicate that mutations induced by gamma-ray radiation are not evenly distributed across the whole genome but located in several concentrated regions. Our study provides an overview of the feature of genetic mutations and the genes affected by gamma-ray radiation, which should contribute to a deeper understanding of the mechanisms of radiation mutation and their application in gene function analysis.
Collapse
Affiliation(s)
- Cong Tan
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yin Wang
- IAEA Collaborating Center, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, China
| | - Dianxin Wu
- IAEA Collaborating Center, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, China
| | - Matthew I Bellgard
- eResearch Office, Queensland University of Technology, Brisbane, 4000, Australia
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xiaoli Shu
- eResearch Office, Queensland University of Technology, Brisbane, 4000, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.,Western Australia Department of Primary Industry and Regional Development, South Perth, WA, 6151, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia. .,IAEA Collaborating Center, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, China. .,Western Australia Department of Primary Industry and Regional Development, South Perth, WA, 6151, Australia.
| |
Collapse
|
24
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. DNA Copy Number Variations as Markers of Mutagenic Impact. Int J Mol Sci 2019; 20:ijms20194723. [PMID: 31554154 PMCID: PMC6801639 DOI: 10.3390/ijms20194723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
25
|
Goßner S, Yuan F, Zhou C, Tan Y, Shu Q, Engel KH. Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic Acid Soybean ( Glycine max L. Merr.) Mutants upon Cross-Breeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5043-5052. [PMID: 30977368 DOI: 10.1021/acs.jafc.9b00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutant Gm-lpa-TW-1-M, resulting from a 2 bp deletion in GmMIPS1, was crossed with a commercial cultivar. F3 and F5 progenies were subjected to nontargeted GC-based metabolite profiling, allowing analysis of a broad array of low molecular weight constituents. In the homozygous lpa mutant progenies the intended phytic acid reduction was accompanied by remarkable metabolic changes of nutritionally relevant constituents such as reduced contents of raffinose oligosaccharides and galactosyl cyclitols as well as increased concentrations in sucrose and various free amino acids. The mutation-induced metabolite signature was nearly unaffected by the cross-breeding and consistently expressed over generations and in different growing seasons. Therefore, not only the primary MIPS1 lpa mutant but also its progenies might be valuable genetic resources for commercial breeding programs to produce soybean seeds stably exhibiting improved phytate-related and nutritional properties.
Collapse
Affiliation(s)
- Sophia Goßner
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Freising-Weihenstephan D-85354 , Germany
| | - Fengjie Yuan
- Institute of Crop Science and Nuclear Technology Utilization , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Chenguang Zhou
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Freising-Weihenstephan D-85354 , Germany
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Karl-Heinz Engel
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Freising-Weihenstephan D-85354 , Germany
| |
Collapse
|
26
|
Ichida H, Morita R, Shirakawa Y, Hayashi Y, Abe T. Targeted exome sequencing of unselected heavy-ion beam-irradiated populations reveals less-biased mutation characteristics in the rice genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:301-314. [PMID: 30584677 PMCID: PMC6850588 DOI: 10.1111/tpj.14213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/20/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
Heavy-ion beams have been widely utilized as a novel and effective mutagen for mutation breeding in diverse plant species, but the induced mutation spectrum is not fully understood at the genome scale. We describe the development of a multiplexed and cost-efficient whole-exome sequencing procedure in rice, and its application to characterize an unselected population of heavy-ion beam-induced mutations. The bioinformatics pipeline identified single-nucleotide mutations as well as small and large (>63 kb) insertions and deletions, and showed good agreement with the results obtained with conventional polymerase chain reaction (PCR) and sequencing analyses. We applied the procedure to analyze the mutation spectrum induced by heavy-ion beams at the population level. In total, 165 individual M2 lines derived from six irradiation conditions as well as eight pools from non-irradiated 'Nipponbare' controls were sequenced using the newly established target exome sequencing procedure. The characteristics and distribution of carbon-ion beam-induced mutations were analyzed in the absence of bias introduced by visual mutant selections. The average (±SE) number of mutations within the target exon regions was 9.06 ± 0.37 induced by 150 Gy irradiation of dry seeds. The mutation frequency changed in parallel to the irradiation dose when dry seeds were irradiated. The total number of mutations detected by sequencing unselected M2 lines was correlated with the conventional mutation frequency determined by the occurrence of morphological mutants. Therefore, mutation frequency may be a good indicator for sequencing-based determination of the optimal irradiation condition for induction of mutations.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- RIKEN Nishina Center for Accelerator‐Based ScienceWakoSaitama351‐0198Japan
| | - Ryouhei Morita
- RIKEN Nishina Center for Accelerator‐Based ScienceWakoSaitama351‐0198Japan
| | - Yuki Shirakawa
- RIKEN Nishina Center for Accelerator‐Based ScienceWakoSaitama351‐0198Japan
| | - Yoriko Hayashi
- RIKEN Nishina Center for Accelerator‐Based ScienceWakoSaitama351‐0198Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator‐Based ScienceWakoSaitama351‐0198Japan
| |
Collapse
|
27
|
Li S, Liu SM, Fu HW, Huang JZ, Shu QY. High-resolution melting-based TILLING of γ ray-induced mutations in rice. J Zhejiang Univ Sci B 2018; 19:620-629. [PMID: 30070085 DOI: 10.1631/jzus.b1700414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics strategy for the high-throughput screening of induced mutations. γ radiation, which often induces both insertion/deletion (Indel) and point mutations, has been widely used in mutation induction and crop breeding. The present study aimed to develop a simple, high-throughput TILLING system for screening γ ray-induced mutations using high-resolution melting (HRM) analysis. Pooled rice (Oryza sativa) samples mixed at a 1:7 ratio of Indel mutant to wild-type DNA could be distinguished from the wild-type controls by HRM analysis. Thus, an HRM-TILLING system that analyzes pooled samples of four M2 plants is recommended for screening γ ray-induced mutants in rice. For demonstration, a γ ray-mutagenized M2 rice population (n=4560) was screened for mutations in two genes, OsLCT1 and SPDT, using this HRM-TILLING system. Mutations including one single nucleotide substitution (G→A) and one single nucleotide insertion (A) were identified in OsLCT1, and one trinucleotide (TTC) deletion was identified in SPDT. These mutants can be used in rice breeding and genetic studies, and the findings are of importance for the application of γ ray mutagenesis to the breeding of rice and other seed crops.
Collapse
Affiliation(s)
- Shan Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China.,Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Song-Mei Liu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao-Wei Fu
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Jian-Zhong Huang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Qing-Yao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China.,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, China
| |
Collapse
|
28
|
Amri-Tiliouine W, Laouar M, Abdelguerfi A, Jankowicz-Cieslak J, Jankuloski L, Till BJ. Genetic Variability Induced by Gamma Rays and Preliminary Results of Low-Cost TILLING on M 2 Generation of Chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1568. [PMID: 30429862 PMCID: PMC6220596 DOI: 10.3389/fpls.2018.01568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
In order to increase genetic variability for chickpea improvement, the Kabuli genotype, variety Ghab4, was treated with 280 Grays of gamma rays (Cobalt 60). Field characterization began with the M2 generation. A total of 135 M2 families were sown in the field resulting in approximately 4,000 plants. Traits related to phenology (days to flowering, days to maturity), plant morphology of vegetative parts (plant height, height of first pod, number of primary branches per plant) and yield (number of seeds per pod, total number of pods per plant, total number of seeds per plant, seed yield and hundred seed weight) were recorded and analyzed to evaluate genetic variability. An evaluation of the efficacy of low-cost TILLING (Targeting Induced Local Lesions IN Genomes) to discover mutations in the M2 generation was undertaken. Mutation screening focused on genes involved in resistance to two important diseases of chickpea; Ascochyta blight (AB) and Fusarium wilt (FW), as well as genes responsible for early flowering. Analysis of variance showed a highly significant difference among mutant families for all studied traits. The higher estimates of genetic parameters (genotypic and phenotypic coefficient of variation, broad sense heritability and genetic advance) were recorded for number of seeds per plant and yield. Total yield was highly significant and positively correlated with number of pods and seeds per plant. Path analysis revealed that the total number of seeds per plant had the highest positive direct effect followed by hundred seed weight parameter. One cluster from nine exhibited the highest mean values for total number of pods and seeds per plant as well as yield per plant. According to Dunnett's test, 37 M2 families superior to the control were determined for five agronomical traits. Pilot experiments with low-cost TILLING show that the seed stock used for mutagenesis is homogeneous and that small mutations do not predominate at the dosage used.
Collapse
Affiliation(s)
- Wahiba Amri-Tiliouine
- Division of Biotechnology and Plant Breeding, National Institute of Agricultural Research of Algeria, Algiers, Algeria
- Laboratory of Integrative Improvement of Vegetal Productions, Higher National Agronomic School, Algiers, Algeria
| | - Meriem Laouar
- Laboratory of Integrative Improvement of Vegetal Productions, Higher National Agronomic School, Algiers, Algeria
| | - Aissa Abdelguerfi
- Department of Plant Productions, Higher National Agronomic School, Algiers, Algeria
| | - Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna, Austria
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Bradley J. Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna, Austria
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Datta S, Jankowicz‐Cieslak J, Nielen S, Ingelbrecht I, Till BJ. Induction and recovery of copy number variation in banana through gamma irradiation and low-coverage whole-genome sequencing. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1644-1653. [PMID: 29476650 PMCID: PMC6097122 DOI: 10.1111/pbi.12901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Traditional breeding methods are hindered in bananas due to the fact that major cultivars are sterile, parthenocarpic, triploid and thus clonally propagated. This has resulted in a narrow genetic base and limited resilience to biotic and abiotic stresses. Mutagenesis of in vitro propagated bananas is one method to introduce novel alleles and broaden genetic diversity. We previously established a method for the induction and recovery of single nucleotide mutations generated with the chemical mutagen EMS. However, officially released mutant banana varieties have been created using gamma rays, a mutagen that can produce large genomic insertions and deletions (indels). Such dosage mutations may be important for generating observable phenotypes in polyploids. In this study, we establish a low-coverage whole-genome sequencing approach in triploid bananas to recover large genomic indels caused by treatment with gamma irradiation. We first evaluated the commercially released mutant cultivar 'Novaria' and found that it harbours multiple predicted deletions, ranging from 0.3 to 3.8 million base pairs (Mbp). In total, predicted deletions span 189 coding regions. To evaluate the feasibility of generating and maintaining new mutations, we developed a pipeline for mutagenesis and screening for copy number variation in Cavendish bananas using the cultivar 'Williams'. Putative mutations were recovered in 70% of lines treated with 20 Gy and 60% of the lines treated with 40 Gy. While deletion events predominate, insertions were identified in 20 Gy-treated material. Based on these results, we believe this approach can be scaled up to support large breeding projects.
Collapse
Affiliation(s)
- Sneha Datta
- Plant Breeding and Genetics LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureIAEA Laboratories SeibersdorfInternational Atomic Energy AgencyVienna International CentreViennaAustria
| | - Joanna Jankowicz‐Cieslak
- Plant Breeding and Genetics LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureIAEA Laboratories SeibersdorfInternational Atomic Energy AgencyVienna International CentreViennaAustria
| | - Stephan Nielen
- Plant Breeding and Genetics LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureIAEA Laboratories SeibersdorfInternational Atomic Energy AgencyVienna International CentreViennaAustria
| | - Ivan Ingelbrecht
- Plant Breeding and Genetics LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureIAEA Laboratories SeibersdorfInternational Atomic Energy AgencyVienna International CentreViennaAustria
| | - Bradley J. Till
- Plant Breeding and Genetics LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureIAEA Laboratories SeibersdorfInternational Atomic Energy AgencyVienna International CentreViennaAustria
- Present address:
Department of Chromosome BiologyUniversity of ViennaA‐1030ViennaAustria
| |
Collapse
|