1
|
Wang X, Gui N, Ma X, Zeng Y, Mo T, Zhang M. Proliferation, migration and phenotypic transformation of VSMC induced via Hcy related to up-expression of WWP2 and p-STAT3. PLoS One 2024; 19:e0296359. [PMID: 38166045 PMCID: PMC10760878 DOI: 10.1371/journal.pone.0296359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/10/2023] [Indexed: 01/04/2024] Open
Abstract
To provide a theoretical basis for the prevention and treatment of atherosclerosis (AS), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on regulating the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMC) via sirtuin-1 (SIRT1)/signal transducer and activator of transcription 3 (STAT3) through Nedd4-like E3 ubiquitin-protein ligase WWP2 (WWP2). Here, Based on the establishment of ApoE-/- mouse models of high Hcy As and the model of Hcy stimulation of VSMC in vitro to observe the interaction between WWP2 and STAT3 and its effect on the proliferation, migration, and phenotypic transformation of Hcy-induced VSMC, which has not been previously reported. This study revealed that WWP2 could promote the proliferation, migration, and phenotype switch of Hcy-induced VSMC by up-regulating the phosphorylation of SIRT1/STAT3 signaling. Furthermore, Hcy might up-regulate WWP2 expression by inhibiting histone H3K27me3 expression through up-regulated UTX. These data suggest that WWP2 is a novel and important regulator of Hcy-induced VSMC proliferation, migration, and phenotypic transformation.
Collapse
Affiliation(s)
- Xiuyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| | - Na Gui
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Xing Ma
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| | - Yue Zeng
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| | - Tingrun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Minghao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
2
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Ahmad A, Corban MT, Toya T, Sara JD, Lerman B, Park JY, Lerman LO, Lerman A. Coronary Microvascular Endothelial Dysfunction in Patients With Angina and Nonobstructive Coronary Artery Disease Is Associated With Elevated Serum Homocysteine Levels. J Am Heart Assoc 2020; 9:e017746. [PMID: 32993421 PMCID: PMC7792413 DOI: 10.1161/jaha.120.017746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Elevated levels of serum homocysteine, via impaired nitric oxide production, and coronary microvascular dysfunction are associated with increased risk of major adverse cardiovascular events. However, whether serum homocysteine levels and coronary microvascular endothelial dysfunction (CMED) are linked remains unknown. Methods and Results This study included 1418 patients with chest pain or an abnormal functional stress test and with nonobstructive coronary artery disease (<40% angiographic stenosis), who underwent CMED evaluation with functional angiography and had serum homocysteine levels measured. Patients were classified as having normal microvascular function versus CMED. Patients in the CMED group (n=743; 52%) had higher mean age (52.1±12.2 versus 50.0±12.4 years; P<0.0001), higher body mass index (29.1 [25.0-32.8] versus 27.5 [24.2-32.4]; P=0.001), diabetes mellitus (12.5% versus 9.4%; P=0.03), and fewer women (63.5% versus 68.7%; P=0.04) compared with patients in the normal microvascular function group. However, they had lower rates of smoking history, and mildly lower low-density lipoprotein cholesterol levels. Serum homocysteine levels were significantly higher in patients with CMED, and the highest quartile of serum homocysteine level (>9 µmol/L) was an independent predictor of CMED (odds ratio, 1.34 [95% CI, 1.03-1.75]; P=0.03) after adjustment for age; sex; body mass index; chronic kidney disease (CKD); diabetes mellitus; smoking exposure; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol and triglycerides; and aspirin, statin, and B vitamin use. Conclusions Patients with CMED have significantly higher levels of serum homocysteine. Elevated serum homocysteine levels were associated with a significantly increased odds of an invasive diagnosis of CMED. The current study supports a potential role for homocysteine for diagnosis and target treatment in the patients with early coronary atherosclerosis.
Collapse
Affiliation(s)
- Ali Ahmad
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | | | - Takumi Toya
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Division of CardiologyNational Defense Medical CollegeTokorozawaSaitamaJapan
| | | | - Ben Lerman
- School of MedicineSt. George’s UniversityWest IndiesGrenada
| | - Ji Young Park
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Division of CardiologyDepartment of Internal MedicineNowon Eulji Medical CenterEulji UniversitySeoulRepublic of Korea
| | | | - Amir Lerman
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| |
Collapse
|
4
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
5
|
Meng L, Uzui H, Guo H, Tada H. Role of SGLT1 in high glucose level-induced MMP-2 expression in human cardiac fibroblasts. Mol Med Rep 2018; 17:6887-6892. [PMID: 29512713 DOI: 10.3892/mmr.2018.8688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis is a major pathological manifestation of diabetic cardiomyopathy (DCM), which leads to cardiac remodeling, dilated cardiomyopathy and congestive heart failure. Human cardiac fibroblasts (HCF) constitute the predominant cell type in the heart and matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are also involved in cardiac fibrosis. However, it is unclear whether high glucose levels affect the expression of MMPs and TIMPs in HCF. Sodium‑glucose cotransporter (SGLT) inhibitors have been developed as therapeutic agents and the anti‑DCM effect of SGLT inhibitors has been demonstrated by previous studies. However, whether SLGT inhibitors protect the diabetic heart by directly inhibiting the SGLTs in HCF in addition to lowering the blood glucose levels, has not yet been determined. In the present study, increased MMP‑2 expression was noted in HCFs in response to high glucose levels, which may be reversed by phlorizin (inhibits both SGLT1 and SGLT2), but not dapagliflozin (inhibits SGLT2). In addition, SGLT1 was revealed to be present in the HCFs and high glucose level was demonstrated to increase SGLT1 expression, which may be attenuated by phlorizin. Therefore it was concluded that high glucose levels induced MMP‑2 expression in the HCFs, potentially by upregulating SGLT1. SGLT1 inhibition may be a novel strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Liping Meng
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910‑1193, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910‑1193, Japan
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910‑1193, Japan
| |
Collapse
|
6
|
Liu P, Su J, Song X, Wang S. miR-92a regulates the expression levels of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 3 via sirtuin 1 signaling in hydrogen peroxide-induced vascular smooth muscle cells. Mol Med Rep 2017; 17:1041-1048. [PMID: 29115493 DOI: 10.3892/mmr.2017.7937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) exhibit a notably increased rate of migration, which is one of the most common pathological changes in atherosclerosis. Investigations into the role of micro (mi)RNAs in the regulation of VSMC migration are beginning to emerge and additional miRNAs involved in VSMC migration modulation require identification. In the current study, VSMCs were primarily cultured from rat thoracic aortas, transfected with miR‑92a mimics and induced by hydrogen peroxide (H2O2) for 24 h. Total mRNA and protein were collected for quantitative polymerase chain reaction and western blot analysis. In addition, the sirtuin 1 (SIRT1) gene was detected by luciferase reporter assay and VSMC migration was detected by Transwell migration assay. The current results demonstrated that reduced expression of miR‑92a and overexpression of SIRT1 at the mRNA level were observed in H2O2‑induced VSMCs. Furthermore, luciferase reporter assay demonstrated that the activity of the SIRT1 3'‑untranslated region was reduced by miR‑92a mimics. The upregulation of MMP9 and the downregulation of TIMP3 in H2O2‑induced VSMCs were observed to be reversed by miR‑92a mimics in addition to SIRT1 siRNA. Finally, Transwell migration assay revealed that miR‑92a overexpression and silencing SIRT1 mitigated VSMC migration following H2O2 treatment. The present study indicated that miR‑92a prevented the migration of H2O2‑induced VSMCs by repressing the expression of SIRT1, and also provided a novel therapy to protect against the phenotypic change of VSMCs in atherosclerosis.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Jianfang Su
- College of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xixi Song
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Shixiao Wang
- Department of Internal Medicine, Shanghai Dermatology Hospital, Tongji University, Shanghai 200443, P.R. China
| |
Collapse
|
7
|
Polyphenols and Polypeptides in Chinese Rice Wine Inhibit Homocysteine-induced Proliferation and Migration of Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2016; 67:482-90. [DOI: 10.1097/fjc.0000000000000370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Bao XM, Zheng H. Atorvastatin attenuates homocysteine-induced migration of smooth muscle cells through mevalonate pathway involving reactive oxygen species and p38 MAPK. Clin Exp Pharmacol Physiol 2015; 42:865-73. [PMID: 26041506 DOI: 10.1111/1440-1681.12435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/04/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao-mei Bao
- Department of Cardiology; Xuhui District Central Hospital; Shanghai China
| | - Hongchao Zheng
- Department of Cardiology; Xuhui District Central Hospital; Shanghai China
| |
Collapse
|