1
|
Khampang S, Cho IK, Punyawai K, Gill B, Langmo JN, Nath S, Greeson KW, Symosko KM, Fowler KL, Tian S, Statz JP, Steves AN, Parnpai R, White MA, Hennebold JD, Orwig KE, Simerly CR, Schatten G, Easley CA. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F&S SCIENCE 2021; 2:365-375. [PMID: 34970648 PMCID: PMC8716017 DOI: 10.1016/j.xfss.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells. DESIGN Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection. SETTING Multiple academic laboratory settings. PATIENTS Not applicable. INTERVENTIONS Intracytoplasmic sperm(atid) injection of in vitro-derived spermatids from nhpESCs into rhesus macaque oocytes. MAIN OUTCOME MEASURES Differentiation into spermatogenic cell lineages was measured through multiple assessments including ribonucleic acid sequencing and immunocytochemistry for various spermatogenic markers. In vitro spermatids were assessed for their ability to fertilize oocytes by intracytoplasmic sperm(atid) injection by assessing early fertilization events such as spermatid deoxyribonucleic acid decondensation and pronucleus formation/apposition. Preimplantation embryo development from the one-cell zygote stage to the blastocyst stage was also assessed. RESULTS Nonhuman primate embryonic stem cells can be differentiated into advanced germ cell lineages, including haploid rSLCs. These rSLCs undergo deoxyribonucleic acid decondensation and pronucleus formation/apposition when microinjected into rhesus macaque mature oocytes, which, after artificial activation and coinjection of ten-eleven translocation 3 protein, undergo embryonic divisions with approximately 12% developing successfully into expanded blastocysts. CONCLUSIONS This work demonstrates that rSLCs, generated in vitro from primate pluripotent stem cells, mimic many of the capabilities of in vivo round spermatids and perform events essential for preimplantation development. To our knowledge, this work represents, for the first time, that functional spermatid-like cells can be derived in vitro from primate pluripotent stem cells.
Collapse
Affiliation(s)
- Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - In Ki Cho
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Kanchana Punyawai
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia
| | - Brittany Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Jacqueline N Langmo
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Shivangi Nath
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Krista M Symosko
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Siran Tian
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia
| | - John P Statz
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Alyse N Steves
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kyle E Orwig
- Magee-Womens Research Institute and Departments of Obstetrics, Gynecology, and Reproductive Sciences, Cell Biology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Calvin R Simerly
- Magee-Womens Research Institute and Departments of Obstetrics, Gynecology, and Reproductive Sciences, Cell Biology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Gerald Schatten
- Magee-Womens Research Institute and Departments of Obstetrics, Gynecology, and Reproductive Sciences, Cell Biology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases; Yerkes National Primate Research Center; Atlanta, Georgia.,Department of Environmental Health Science, College of Public Health, University of Georgia; Athens, Georgia.,Regenerative Bioscience Center; University of Georgia; Athens, Georgia
| |
Collapse
|
2
|
Wianny F, Blachère T, Godet M, Guillermas R, Cortay V, Bourillot PY, Lefèvre A, Savatier P, Dehay C. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates. Stem Cell Res 2016; 16:557-67. [DOI: 10.1016/j.scr.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
|
3
|
Cheong CY, Chng K, Ng S, Chew SB, Chan L, Ferguson-Smith AC. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation. Genome Res 2015; 25:611-23. [PMID: 25862382 PMCID: PMC4417110 DOI: 10.1101/gr.183301.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease.
Collapse
Affiliation(s)
- Clara Y Cheong
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Keefe Chng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Shilen Ng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Siew Boom Chew
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Louiza Chan
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Anne C Ferguson-Smith
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
4
|
Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 2013; 23:1187-200. [PMID: 23856644 PMCID: PMC3790242 DOI: 10.1038/cr.2013.93] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Recent success in the derivation of haploid embryonic stem cells (haESCs) from mouse via parthenogenesis and androgenesis has enabled genetic screening in mammalian cells and generation of gene-modified animals. However, whether haESCs can be derived from primates remains unknown. Here, we report the derivation of haESCs from parthenogenetic blastocysts of Macaca fascicularis monkeys. These cells, termed as PG-haESCs, are pluripotent and can differentiate to cells of three embryonic germ layers in vitro or in vivo. Interestingly, the haploidy of one monkey PG-haESC line (MPH1) is more stable compared with that of the other one (MPH2), as shown by the existence of haploid cells for more than 140 days without fluorescence-activated cell sorting (FACS) enrichment of haploid cells. Importantly, transgenic monkey PG-haESC lines can be generated by lentivirus- and piggyBac transposon-mediated gene transfer. Moreover, genetic screening is feasible in monkey PG-haESCs. Our results demonstrate that PG-haESCs can be generated from monkeys, providing an ideal tool for genetic analyses in primates.
Collapse
Affiliation(s)
- Hui Yang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Harvey AJ, Mao S, Lalancette C, Krawetz SA, Brenner CA. Transcriptional differences between rhesus embryonic stem cells generated from in vitro and in vivo derived embryos. PLoS One 2012; 7:e43239. [PMID: 23028448 PMCID: PMC3445581 DOI: 10.1371/journal.pone.0043239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/18/2012] [Indexed: 01/16/2023] Open
Abstract
Numerous studies have focused on the transcriptional signatures that underlie the maintenance of embryonic stem cell (ESC) pluripotency. However, it remains unclear whether ESC retain transcriptional aberrations seen in in vitro cultured embryos. Here we report the first global transcriptional profile comparison between ESC generated from either in vitro cultured or in vivo derived primate embryos by microarray analysis. Genes involved in pluripotency, oxygen regulation and the cell cycle were downregulated in rhesus ESC generated from in vitro cultured embryos (in vitro ESC). Significantly, several gene differences are similarly downregulated in preimplantation embryos cultured in vitro, which have been associated with long term developmental consequences and disease predisposition. This data indicates that prior to derivation, embryo quality may influence the molecular signature of ESC lines, and may differentially impact the physiology of cells prior to or following differentiation.
Collapse
Affiliation(s)
- Alexandra J Harvey
- Department of Physiology, Wayne State University, Detroit, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
6
|
Tachibana M, Ma H, Sparman ML, Lee HS, Ramsey CM, Woodward JS, Sritanaudomchai H, Masterson KR, Wolff EE, Jia Y, Mitalipov SM. X-chromosome inactivation in monkey embryos and pluripotent stem cells. Dev Biol 2012; 371:146-55. [PMID: 22935618 DOI: 10.1016/j.ydbio.2012.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.
Collapse
Affiliation(s)
- Masahito Tachibana
- Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Byers B, Cord B, Nguyen HN, Schüle B, Fenno L, Lee PC, Deisseroth K, Langston JW, Pera RR, Palmer TD. SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress. PLoS One 2011; 6:e26159. [PMID: 22110584 PMCID: PMC3217921 DOI: 10.1371/journal.pone.0026159] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/21/2011] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is an incurable age-related neurodegenerative disorder affecting both the central and peripheral nervous systems. Although common, the etiology of PD remains poorly understood. Genetic studies infer that the disease results from a complex interaction between genetics and environment and there is growing evidence that PD may represent a constellation of diseases with overlapping yet distinct underlying mechanisms. Novel clinical approaches will require a better understanding of the mechanisms at work within an individual as well as methods to identify the specific array of mechanisms that have contributed to the disease. Induced pluripotent stem cell (iPSC) strategies provide an opportunity to directly study the affected neuronal subtypes in a given patient. Here we report the generation of iPSC-derived midbrain dopaminergic neurons from a patient with a triplication in the α-synuclein gene (SNCA). We observed that the iPSCs readily differentiated into functional neurons. Importantly, the PD-affected line exhibited disease-related phenotypes in culture: accumulation of α-synuclein, inherent overexpression of markers of oxidative stress, and sensitivity to peroxide induced oxidative stress. These findings show that the dominantly-acting PD mutation is intrinsically capable of perturbing normal cell function in culture and confirm that these features reflect, at least in part, a cell autonomous disease process that is independent of exposure to the entire complexity of the diseased brain.
Collapse
Affiliation(s)
- Blake Byers
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Branden Cord
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, United States of America
| | - Ha Nam Nguyen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, California, United States of America
| | - Lief Fenno
- Department of Neuroscience, Stanford University, Stanford, California, United States of America
| | - Patrick C. Lee
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, United States of America
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Neuroscience, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford, California, United States of America
| | - J. William Langston
- Parkinson's Institute and Clinical Center, Sunnyvale, California, United States of America
| | - Renee Reijo Pera
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, United States of America
- * E-mail: (RRP); (TDP)
| | - Theo D. Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- * E-mail: (RRP); (TDP)
| |
Collapse
|
8
|
Simerly C, McFarland D, Castro C, Lin CC, Redinger C, Jacoby E, Mich-Basso J, Orwig K, Mills P, Ahrens E, Navara C, Schatten G. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Res 2011; 7:28-40. [PMID: 21543277 DOI: 10.1016/j.scr.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022] Open
Abstract
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor.
Collapse
Affiliation(s)
- Calvin Simerly
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh Development Center, Magee-Womens Research Institute and Foundation, 204 Craft Avenue, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mai X, Mai Q, Li T, Zhou C. Dynamic expression patterns of imprinted genes in human embryonic stem cells following prolonged passaging and differentiation. J Assist Reprod Genet 2010; 28:315-23. [PMID: 21161363 DOI: 10.1007/s10815-010-9524-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/01/2010] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate the overall expression patterns of imprinted genes in human embryonic stem cells following long term culture and differentiation. MATERIALS AND METHODS Expression levels of 65 imprinted genes determined by PCR array were analyzed in one human embryonic stem cell line (cHES1) following prolonged passaging and differentiation. RESULTS Transcripts of 63 imprinted genes were detected in cHES1 cells. Expression levels of all but 5 imprinted genes did not correlate with passage numbers or differ in cells after passage 50 compared with those before passage 50. SLC22A2, SLC22A3, CPA, H19, COPG2IT1 and IGF2 expression were significantly increased in embryoid bodies compared with undifferentiated cells. CONCLUSIONS The global expression profiles of imprinted genes are generally stable in human embryonic stem cells after prolonged passaging and differentiation.
Collapse
Affiliation(s)
- Xiuyun Mai
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Avenue, Yuexiu, 510080, Guangzhou, China
| | | | | | | |
Collapse
|
10
|
Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns. Stem Cell Res Ther 2010; 1:24. [PMID: 20699013 PMCID: PMC2941116 DOI: 10.1186/scrt24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells.
Collapse
|
11
|
Sritanaudomchai H, Ma H, Clepper L, Gokhale S, Bogan R, Hennebold J, Wolf D, Mitalipov S. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 2010; 25:1927-41. [PMID: 20522441 PMCID: PMC2907230 DOI: 10.1093/humrep/deq144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis raises complex issues regarding differential gene expression. METHODS AND RESULTS We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs. To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we conducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identification of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele. CONCLUSION Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel imprinted genes.
Collapse
|
12
|
Sparman M, Dighe V, Sritanaudomchai H, Ma H, Ramsey C, Pedersen D, Clepper L, Nighot P, Wolf D, Hennebold J, Mitalipov S. Epigenetic reprogramming by somatic cell nuclear transfer in primates. Stem Cells 2009; 27:1255-64. [PMID: 19489081 DOI: 10.1002/stem.60] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We recently demonstrated that somatic cells from adult primates could be reprogrammed into a pluripotent state by somatic cell nuclear transfer. However, the low efficiency with donor cells from one monkey necessitated the need for large oocyte numbers. Here, we demonstrate nearly threefold higher blastocyst development and embryonic stem (ES) cell derivation rates with different nuclear donor cells. Two ES cell lines were isolated using adult female rhesus macaque skin fibroblasts as nuclear donors and oocytes retrieved from one female, following a single controlled ovarian stimulation. In addition to routine pluripotency tests involving in vitro and in vivo differentiation into various somatic cell types, primate ES cells derived from reprogrammed somatic cells were also capable of contributing to cells expressing markers of germ cells. Moreover, imprinted gene expression, methylation, telomere length, and X-inactivation analyses were consistent with accurate and extensive epigenetic reprogramming of somatic cells by oocyte-specific factors.
Collapse
Affiliation(s)
- Michelle Sparman
- Division of Reproductive Sciences, Oregon National Primate Research Center, School of Medicine, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Establishment and characterization of baboon embryonic stem cell lines: an Old World Primate model for regeneration and transplantation research. Stem Cell Res 2009; 2:178-87. [PMID: 19393591 DOI: 10.1016/j.scr.2009.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/23/2009] [Accepted: 02/06/2009] [Indexed: 11/22/2022] Open
Abstract
Here we have developed protocols using the baboon as a complementary alternative Old World Primate to rhesus and other macaques which have severe limitations in their availability. Baboons are not limited as research resources, they are evolutionarily closer to humans, and the multiple generations of pedigreed colonies which display complex human disease phenotypes all support their further optimization as an invaluable primate model. Since neither baboon-assisted reproductive technologies nor baboon embryonic stem cells (ESCs) have been reported, here we describe the first derivations and characterization of baboon ESC lines from IVF-generated blastocysts. Two ESCs lines (BabESC-4 and BabESC-15) display ESC morphology, express pluripotency markers (Oct-4, hTert, Nanog, Sox-2, Rex-1, TRA1-60, TRA1-81), and maintain stable euploid female karyotypes with parentage confirmed independently. They have been grown continuously for >430 and 290 days, respectively. Teratomas from both lines have all three germ layers. Availabilities of these BabESCs represent another important resource for stem cell biologists.
Collapse
|
14
|
Chang G, Liu S, Wang F, Zhang Y, Kou Z, Chen D, Gao S. Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells. Genomics 2009; 93:112-9. [DOI: 10.1016/j.ygeno.2008.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 11/26/2022]
|
15
|
Sun Y, Li H, Liu Y, Mattson MP, Rao MS, Zhan M. Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation. PLoS One 2008; 3:e3406. [PMID: 18923680 PMCID: PMC2566604 DOI: 10.1371/journal.pone.0003406] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022] Open
Abstract
Background Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation. Methodology/Principal Findings We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFβ and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs. Conclusions/Significance Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a “road-map” for further experimental investigation.
Collapse
Affiliation(s)
- Yu Sun
- Bioinformatics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Huai Li
- Bioinformatics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ying Liu
- The CRL, Invitrogen Corporation, Carlsbad, California, United States of America
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mahendra S. Rao
- The CRL, Invitrogen Corporation, Carlsbad, California, United States of America
| | - Ming Zhan
- Bioinformatics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Li C, Bin Y, Curchoe C, Yang L, Feng D, Jiang Q, O'Neill M, Tian XC, Zhang S. Genetic imprinting of H19 and IGF2 in domestic pigs (Sus scrofa). Anim Biotechnol 2008; 19:22-7. [PMID: 18228173 DOI: 10.1080/10495390701758563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The genes insulin-like growth factor 2 (IGF2) and H19 express paternally and maternally, respectively, in humans, mice, sheep, and cattle. Additionally, IGF2 has been shown to be regulated by at least four promoters in a tissue- or development-specific manner. In the domestic pigs, the promoter- and tissue-specific imprinting pattern of IGF2 has not been well characterized, nor is the imprinting pattern of H19. In the present study, we identified two polymorphisms in each of IGF2 (exons 2 and 9) and H19 (exons 1 and 5) and determined the imprinting status of these two genes in 13 organs / tissues of week-old pigs. IGF2 P1 transcript is bi-allelically expressed (not imprinted) in all major organs studied, while the majority of IGF2 transcripts are expressed from promoters 2-4 and are imprinted. H19 is exclusively expressed from the maternal allele in all major organs, concurrent with observations in other species.
Collapse
Affiliation(s)
- Chao Li
- College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim KP, Thurston A, Mummery C, Ward-van Oostwaard D, Priddle H, Allegrucci C, Denning C, Young L. Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Res 2007; 17:1731-42. [PMID: 17989250 DOI: 10.1101/gr.6609207] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disregulation of imprinted genes can be associated with tumorigenesis and altered cell differentiation capacity and so could provide adverse outcomes for stem cell applications. Although the maintenance of mouse and primate embryonic stem cells in a pluripotent state has been reported to disrupt the monoallelic expression of several imprinted genes, available data have suggested relatively higher imprint stability in the human equivalents. Identification of 202 heterozygous loci allowed us to examine the allelic expression of 22 imprinted genes in 22 human embryonic stem cell lines. Half of the genes examined (IPW, H19, MEG3, MEST isoforms 1 and 2, PEG10, MESTIT1, NESP55, ATP10A, PHLDA2, IGF2) showed variable allelic expression between lines, indicating vulnerability to disrupted imprinting. However, seven genes showed consistent monoallelic expression (NDN, MAGEL2, SNRPN, PEG3, KCNQ1, KCNQ1OT1, CDKN1C). Furthermore, four genes known to be monoallelic or to exhibit polymorphic imprinting in later-developing human tissues (TP73, IGF2R, WT1, SLC22A18) were always biallelic in hESCs. MEST isoform 1, PEG10, and NESP55 showed an association between the variability observed in interline allelic expression status and the DNA methylation of previously identified regulatory regions. Our results demonstrate gene-specific differences in the stability of imprinted loci in human embryonic stem cells and identify disrupted DNA methylation as one potential mechanism. We conclude the prudence of including comprehensive imprinting analysis in the continued characterization of human embryonic stem cell lines.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Centre for Biomolecular Sciences, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The role of the non-human primate (NHP) oocyte and embryo in translational research is considered here including both in vitro activities directly involving oocytes or embryos as well as animal studies that impact reproductive function. Reasons to consider NHPs as animal research models along with their limitations are summarized. A case is made that in limited instances, such as in the development and application of the assisted reproductive technologies or in the study of embryonic stem cells, the human oocyte and embryo have acted as models for the monkey. The development of strategies for the preservation of fertility is used as an example of ongoing research in the non-human primate that cannot be conducted in women for ethical reasons. In animal studies, monitoring reproductive potential, responses to embryonic stem cell transplantation, along with translational research in the field of contraceptive development for women are considered as subjects that benefit from the availability of a NHP model.
Collapse
|
19
|
Mitalipov SM. Genomic imprinting in primate embryos and embryonic stem cells. Reprod Fertil Dev 2007; 18:817-21. [PMID: 17147929 DOI: 10.1071/rd06112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Accepted: 09/04/2006] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem (ES) cells hold promise for cell and tissue replacement approaches to treating human diseases. However, long-term in vitro culture and manipulations of ES cells may adversely affect their epigenetic integrity including imprinting. Disruption or inappropriate expression of imprinted genes is associated with several clinically significant syndromes and tumorigenesis in humans. We demonstrated aberrant biallelic expression of IGF2 and H19 in several rhesus monkey ES cell lines while SNRPN and NDN were normally imprinted and expressed from the paternal allele. In contrast, expanded blastocyst-stage embryos, from which these ES cells were derived, exhibited normal paternal expression of IGF2 and maternal expression of H19. To test the possibility that aberrant methylation at an imprinting centre (IC) upstream of H19 accounts for the relaxed imprinting of IGF2 and H19, we performed comprehensive methylation analysis by investigating methylation profiles of CpG sites within the IGF2/H19 IC. Our results demonstrate abnormal hypermethylation within the IGF2/H19 IC in all analysed ES cell lines consistent with biallelic expression of these genes. Cellular overproliferation and tumour formation resulting from tissue or cell transplantation are potential problems that must be addressed before clinical trials of ES cell-based therapy are initiated.
Collapse
Affiliation(s)
- Shoukhrat M Mitalipov
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
20
|
Mitalipov S, Clepper L, Sritanaudomchai H, Fujimoto A, Wolf D. Methylation status of imprinting centers for H19/IGF2 and SNURF/SNRPN in primate embryonic stem cells. Stem Cells 2006; 25:581-8. [PMID: 17170068 DOI: 10.1634/stemcells.2006-0120] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) hold promise for cell and tissue replacement approaches to treating human diseases based on their capacity to differentiate into a wide variety of somatic cells and tissues. However, long-term in vitro culture and manipulations of ESCs may adversely affect their epigenetic integrity, including imprinting. We have recently reported aberrant biallelic expression of IGF2 and H19 in several rhesus monkey ESC lines, whereas SNRPN and NDN were normally imprinted and expressed predominantly from the paternal allele. The dysregulation of IGF2 and H19 that is associated with tumorigenesis in humans may result from improper maintenance of allele-specific methylation patterns at an imprinting center (IC) upstream of H19. To test this possibility, we performed methylation analysis of several monkey ESC lines by genomic bisulfite sequencing. We investigated methylation profiles of CpG islands within the IGF2/H19 IC harboring the CTCF-6 binding site. In addition, the methylation status of the IC within the promoter/exon 1 of SNURF/SNRPN known as the Prader-Willi syndrome IC was examined. Our results demonstrate abnormal hypermethylation within the IGF2/H19 IC in all analyzed ESC lines, whereas the SNURF/SNRPN IC was differentially methylated, consistent with monoallelic expression.
Collapse
Affiliation(s)
- Shoukhrat Mitalipov
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The promise of human embryonic stem cell (hESC) lines for treating injuries and degenerative diseases, for understanding early human development, for disease modelling and for drug discovery, has brought much excitement to scientific communities as well as to the public. Although all of the lines derived worldwide share the expression of characteristic pluripotency markers, many differences are emerging between lines that may be more associated with the wide range of culture conditions in current use than the inherent genetic variation of the embryos from which embryonic stem cells were derived. Thus, the validity of many comparisons between lines published thus far is difficult to interpret. This article reviews the evidence for differences between lines, focusing on studies of pluripotency marker molecules, transcriptional profiling, genetic stability and epigenetic stability, for which there is most evidence. Recognition and assessment of environmentally induced differences will be important to facilitate the development of culture systems that maximize stability in culture and provide lines with maximal potential for safety and success in the range of possible applications.
Collapse
Affiliation(s)
- C Allegrucci
- School of Human Development, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | | |
Collapse
|
22
|
Mitalipov S, Kuo HC, Byrne J, Clepper L, Meisner L, Johnson J, Zeier R, Wolf D. Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells 2006; 24:2177-86. [PMID: 16741224 DOI: 10.1634/stemcells.2006-0125] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ESCs are important as research subjects since the mechanisms underlying cellular differentiation, expansion, and self-renewal can be studied along with differentiated tissue development and regeneration in vitro. Furthermore, human ESCs hold promise for cell and tissue replacement approaches to treating human diseases. The rhesus monkey is a clinically relevant primate model that will likely be required to bring these clinical applications to fruition. Monkey ESCs share a number of properties with human ESCs, and their derivation and use are not affected by bioethical concerns. Here, we summarize our experience in the establishment of 18 ESC lines from rhesus monkey preimplantation embryos generated by the application of the assisted reproductive technologies. The newly derived monkey ESC lines were maintained in vitro without losing their chromosomal integrity, and they expressed markers previously reported present in human and monkey ESCs. We also describe initial efforts to compare the pluripotency of ESC lines by expression profiling, chimeric embryo formation, and in vitro-directed differentiation into endodermal, mesodermal, and ectodermal lineages.
Collapse
Affiliation(s)
- Shoukhrat Mitalipov
- Division of Reproductive Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA.
| | | | | | | | | | | | | | | |
Collapse
|