1
|
Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020; 11:79. [PMID: 32087752 PMCID: PMC7036219 DOI: 10.1186/s13287-020-1587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. Methods Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). Results Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. Conclusions These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.
Collapse
Affiliation(s)
- Dominik Barisic
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marita Erb
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dahlia Al-Mudaris
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Small-molecule flunarizine increases SMN protein in nuclear Cajal bodies and motor function in a mouse model of spinal muscular atrophy. Sci Rep 2018; 8:2075. [PMID: 29391529 PMCID: PMC5794986 DOI: 10.1038/s41598-018-20219-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
The hereditary neurodegenerative disorder spinal muscular atrophy (SMA) is characterized by the loss of spinal cord motor neurons and skeletal muscle atrophy. SMA is caused by mutations of the survival motor neuron (SMN) gene leading to a decrease in SMN protein levels. The SMN deficiency alters nuclear body formation and whether it can contribute to the disease remains unclear. Here we screen a series of small-molecules on SMA patient fibroblasts and identify flunarizine that accumulates SMN into Cajal bodies, the nuclear bodies important for the spliceosomal small nuclear RNA (snRNA)-ribonucleoprotein biogenesis. Using histochemistry, real-time RT-PCR and behavioural analyses in a mouse model of SMA, we show that along with the accumulation of SMN into Cajal bodies of spinal cord motor neurons, flunarizine treatment modulates the relative abundance of specific spliceosomal snRNAs in a tissue-dependent manner and can improve the synaptic connections and survival of spinal cord motor neurons. The treatment also protects skeletal muscles from cell death and atrophy, raises the neuromuscular junction maturation and prolongs life span by as much as 40 percent (p < 0.001). Our findings provide a functional link between flunarizine and SMA pathology, highlighting the potential benefits of flunarizine in a novel therapeutic perspective against neurodegenerative diseases.
Collapse
|
3
|
Andrade BM, Baldanza MR, Ribeiro KC, Porto A, Peçanha R, Fortes FSA, Zapata-Sudo G, Campos-de-Carvalho AC, Goldenberg RCS, Werneck-de-Castro JP. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model. PLoS One 2015; 10:e0127561. [PMID: 26039243 PMCID: PMC4454438 DOI: 10.1371/journal.pone.0127561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/16/2015] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.
Collapse
Affiliation(s)
- Bruno M. Andrade
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Marcelo R. Baldanza
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Karla C. Ribeiro
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Anderson Porto
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ramon Peçanha
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fabio S. A. Fortes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Gisele Zapata-Sudo
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Centro de Ciências e Saúde, Bloco J, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Antonio C. Campos-de-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Regina C. S. Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - João Pedro Werneck-de-Castro
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- * E-mail:
| |
Collapse
|
4
|
Pozzobon M, Franzin C, Piccoli M, De Coppi P. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach. Front Aging Neurosci 2014; 6:222. [PMID: 25221507 PMCID: PMC4145352 DOI: 10.3389/fnagi.2014.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle-specific stem cells, namely satellite cells. Muscle diseases, in particular chronic degenerative states of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continuous cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is no definitive cure in particular for genetic muscle disease. Keeping this in mind, in this article, we will give special consideration to muscle diseases and the use of fetal derived stem cells as a new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immune-modulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.
Collapse
Affiliation(s)
- Michela Pozzobon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Chiara Franzin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Paolo De Coppi
- UCL Institute of Child Health and Great Ormond Street Hospital , London , UK
| |
Collapse
|
5
|
Costamagna D, Quattrocelli M, Duelen R, Sahakyan V, Perini I, Palazzolo G, Sampaolesi M. Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cell Mol Life Sci 2014; 71:615-27. [PMID: 23949444 PMCID: PMC11113798 DOI: 10.1007/s00018-013-1445-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023]
Abstract
Regenerative medicine for skeletal and cardiac muscles still constitutes a fascinating and ambitious frontier. In this perspective, understanding the possibilities of intrinsic cell plasticity, present in post-natal muscles, is vital to define and improve novel therapeutic strategies for acute and chronic diseases. In addition, many somatic stem cells are now crossing the boundaries of basic/translational research to enter the first clinical trials. However, it is still an open question whether a lineage switch between skeletal and cardiac adult myogenesis is possible. Therefore, this review focuses on resident somatic stem cells of post-natal skeletal and cardiac muscles and their plastic potential toward the two lineages. Furthermore, examples of myogenic lineage switch in adult stem cells are also reported and discussed.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Mattia Quattrocelli
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Vardine Sahakyan
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Ilaria Perini
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Giacomo Palazzolo
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Flix B, Suárez-Calvet X, Díaz-Manera J, Santos-Nogueira E, Mancuso R, Barquinero J, Navas M, Navarro X, Illa I, Gallardo E. Bone marrow transplantation in dysferlin-deficient mice results in a mild functional improvement. Stem Cells Dev 2013; 22:2885-94. [PMID: 23777246 DOI: 10.1089/scd.2013.0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysferlinopathies are caused by mutations in the DYSF gene. Dysferlin is a protein mainly expressed in the skeletal muscle and monocytes. Cell therapy constitutes a promising tool for the treatment of muscular dystrophies. The aim of our study was to evaluate the effect of bone marrow transplantation (BMT) using the A/J Dysf(prmd) mouse model of dysferlinopathy. For that purpose, we studied dysferlin expression by western blot and/or immunohistochemistry in transplanted mice and controls. Computerized analyses of locomotion and electrophysiological techniques were also performed to test the functional improvement. We observed dysferlin expression in splenocytes, but not in the skeletal muscle of the transplanted mice. However, the locomotion test, electromyography studies, and muscle histology showed an improvement in all transplanted mice that was more significant in the animals transplanted with dysferlin⁺/⁺ cells. In conclusion, although BMT restores dysferlin expression in monocytes, but not in skeletal muscle, muscle function was partially recovered. We propose that the slight improvement observed in the functional studies could be related with factors, such as the hepatocyte growth factor, released after BMT that prevented muscle degeneration.
Collapse
Affiliation(s)
- Bàrbara Flix
- 1 Laboratori de Malalties Neuromusculars, Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona (UAB) , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Piccoli M, Franzin C, Bertin E, Urbani L, Blaauw B, Repele A, Taschin E, Cenedese A, Zanon GF, André-Schmutz I, Rosato A, Melki J, Cavazzana-Calvo M, Pozzobon M, De Coppi P. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 2013; 30:1675-84. [PMID: 22644669 DOI: 10.1002/stem.1134] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in the survival of motor neuron gene (SMN1) are responsible for spinal muscular atrophy, a fatal neuromuscular disorder. Mice carrying a homozygous deletion of Smn exon 7 directed to skeletal muscle (HSA-Cre, Smn(F7/F7) mice) present clinical features of human muscular dystrophies for which new therapeutic approaches are highly warranted. Herein we demonstrate that tail vein transplantation of mouse amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. Second, after cardiotoxin injury of the Tibialis Anterior, only AFS-transplanted mice efficiently regenerate. Most importantly, secondary transplants of satellite cells (SCs) derived from treated mice show that AFS cells integrate into the muscle stem cell compartment and have long-term muscle regeneration capacity indistinguishable from that of wild-type-derived SC. This is the first study demonstrating the functional and stable integration of AFS cells into the skeletal muscle, highlighting their value as cell source for the treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Martina Piccoli
- Department of Pediatrics and Pediatric Surgery, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kawai K, Xue F, Takahara T, Kudo H, Yata Y, Zhang W, Sugiyama T. Matrix metalloproteinase-9 contributes to the mobilization of bone marrow cells in the injured liver. Cell Transplant 2012; 21:453-64. [PMID: 22793053 DOI: 10.3727/096368911x605367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Effective mobilization of hematopoietic stem cells (HSCs) in injured organs has not been established. Matrix metalloproteinase-9 (MMP-9) is known to release HSCs from bone marrow (BM) into the peripheral blood, but its role in the recruitment of HSCs to injured organs is unclear. In this study we tried to clarify the role of the host MMP-9 in trafficking of HSCs toward the injured liver, especially the relation of MMP-9 with the chemokine receptor 4 (CXCR4)-chemokine ligand 12 (CXCL12) axis, and to examine whether MMP-9 deficiency affects BM cell trafficking to the injured liver in mice. In vitro, we investigated the effect of MMP-9 on migration activity and CXCR4 expression on lineage-negative (Lin(-)) BM cells. In vivo, we induced acute and chronic liver injury in MMP-9 knockout (KO) and control mice by inoculation of carbon tetrachloride, followed by transplantation of Lin(-) BM cells obtained from enhanced green fluorescent protein (EGFP)-transgenic mice, and counted the BM cells mobilized in the injured liver. In a migration assay, active MMP-9, but not proMMP-9, increased the number of migrated Lin(-) BM cells, which was inhibited by tissue inhibitor of metalloproteinase-1 or a MMP inhibitor. This chemoattractant function by MMP-9 was synergistic when cotreated with CXCL12. CXCR4 expression on Lin(-) BM cells was dose- and time-dependently increased by active MMP-9. At the same time, treatment with MMP-9 enhanced CXCL12 expression, and CXCL12 reciprocally increased MMP-9 expression in BM cells. In in vivo studies, many EGFP(+) cells were seen in control recipient mice. In contrast, few EGFP(+) cells were observed in MMP-9 KO mice. BM cells tended to differentiate into desmin(+) cells. In conclusion, MMP-9 contributes to the mobilization of BM cells in the injured liver by upregulating the expression of CXCR4 on Lin(-) BM cells and attracting BM cells along its gradient of CXCL12. Therefore, host MMP-9 plays an important role in BM cell migration in the injured liver.
Collapse
Affiliation(s)
- Kengo Kawai
- Third Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen L, Chen D, Xi H, Wang Q, Liu Y, Zhang F, Wang H, Ren Y, Xiao J, Wang Y, Huang H. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant 2012; 21 Suppl 1:S65-77. [PMID: 22507682 DOI: 10.3727/096368912x633789] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our previous series of studies have proven that olfactory ensheathing cell (OEC) transplantation appears to be able to slow the rate of clinical progression after OEC transplantation in the first 4 months and cell intracranial (key points for neural network restoration, KPNNR) and/or intraspinal (impaired segments) implants provide benefit for patients (including both the bulbar onset and limb onset subtypes) with amyotrophic lateral sclerosis (ALS). Here we report the results of cell therapy in patients with ALS on the basis of long-term observation following multiple transplants. From March of 2003 to January of 2010, 507 ALS patients received our cellular treatment. Among them, 42 patients underwent further OEC therapy by the route of KPNNR for two or more times (two times in 35 patients, three times in 5 patients, four times in 1 patient, and five times in 1 patient). The time intervals are 13.1 (6-60) months between the first therapy and the second one, 15.2 (8-24) months between the second therapy and the third one, 16 (6-26) months between the third therapy and the fourth one, and 9 months between the fourth therapy and the fifth time. All of the patients exhibited partial neurological functional recovery after each cell-based administration. Firstly, the scores of the ALS Functional Rating Scale (ALS-FRS) and ALS Norris Scale increased by 2.6 + 2.4 (0-8) and 4.9 + 5.2 (0-20) after the first treatment, 1.1 + 1.3 (0-5) and 2.3 + 2.9 (0-13) after the second treatment, 1.1 + 1.5 (0-4), and 3.4 + 6.9 (0-19) after the third treatment, 0.0 + 0.0 (0-0), and 2.5 + 3.5 (0-5) after the fourth treatment, and 1 point after the fifth cellular therapy, which were evaluated by independent neurologists. Secondly, the majority of patients have achieved improvement in electromyogram (EMG) assessments after the first, second, third, and fourth cell transplantation. After the first treatment, among the 42 patients, 36 (85.7%) patients' EMG test results improved, the remaining 6 (14.3%) patients' EMG results showed no remarkable change. After the second treatment, of the 42 patients, 30 (71.4%) patients' EMG results improved, 11 (26.2%) patients showed no remarkable change, and 1 (2.4%) patient became worse. After the third treatment, out of the 7 patients, 4 (57.1%) patients improved, while the remaining 3 (42.9%) patients showed no change. Thirdly, the patients have partially recovered their breathing ability as demonstrated by pulmonary functional tests. After the first treatment, 20 (47.6%) patients' pulmonary function ameliorated. After the second treatment, 18 (42.9%) patients' pulmonary function improved. After the third treatment, 2 (28.6%) patients recovered some pulmonary function. After the fourth and fifth treatment, patients' pulmonary function did not reveal significant change. The results show that multiple doses of cellular therapy definitely serve as a positive role in the treatment of ALS. This repeated and periodic cell-based therapy is strongly recommended for the patients, for better controlling this progressive deterioration disorder.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Grabowska I, Brzoska E, Gawrysiak A, Streminska W, Moraczewski J, Polanski Z, Hoser G, Kawiak J, Machaj EK, Pojda Z, Ciemerych MA. Restricted Myogenic Potential of Mesenchymal Stromal Cells Isolated from Umbilical Cord. Cell Transplant 2012; 21:1711-26. [DOI: 10.3727/096368912x640493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Nonhematopoietic cord blood cells and mesenchymal cells of umbilical cord Wharton's jelly have been shown to be able to differentiate into various cell types. Thus, as they are readily available and do not raise any ethical issues, these cells are considered to be a potential source of material that can be used in regenerative medicine. In our previous study, we tested the potential of whole mononucleated fraction of human umbilical cord blood cells and showed that they are able to participate in the regeneration of injured mouse skeletal muscle. In the current study, we focused at the umbilical cord mesenchymal stromal cells isolated from Wharton's jelly. We documented that limited fraction of these cells express markers of pluripotent and myogenic cells. Moreover, they are able to undergo myogenic differentiation in vitro, as proved by coculture with C2C12 myoblasts. They also colonize injured skeletal muscle and, with low frequency, participate in the formation of new muscle fibers. Pretreatment of Wharton's jelly mesenchymal stromal cells with SDF-1 has no impact on their incorporation into regenerating muscle fibers but significantly increased muscle mass. As a result, transplantation of mesenchymal stromal cells enhances the skeletal muscle regeneration.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Gawrysiak
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy Moraczewski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zbigniew Polanski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grazyna Hoser
- Department of Clinical Cytology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Jerzy Kawiak
- Department of Clinical Cytology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Eugeniusz K. Machaj
- Department of Cellular Engineering, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Cellular Engineering, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Asakura A. Skeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation. ACTA ACUST UNITED AC 2012; Suppl 11. [PMID: 24524008 PMCID: PMC3918728 DOI: 10.4172/2157-7633.s11-005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These muscle-derived hematopoietic stem/progenitor cell populations are surprisingly capable of differentiation into hematopoietic cells both after transplantation into irradiated mice and during in vitro colony formation assay. Therefore, these muscle-derived hematopoietic stem/progenitor cells appear to have characteristics similar to classical hematopoietic stem/progenitor cells found in bone marrow. This review outlines recent findings regarding hematopoietic stem/progenitor cell populations residing in adult skeletal muscle and discusses their myogenic potential along with their role in the stem cell niche and related cell therapies for approaching treatment of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
12
|
Chen L, Xi H, Huang H. Cell-Based Neurorestorotherapy in Amyotrophic Lateral Sclerosis - Scientific Truth should Rely on Facts, but Not Conjecture. Front Integr Neurosci 2011; 5:83. [PMID: 22203794 PMCID: PMC3243926 DOI: 10.3389/fnint.2011.00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/29/2011] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lin Chen
- Cell Research Center, Beijing Hongtianji Neuroscience Academy Beijing, China
| | | | | |
Collapse
|
13
|
Riessland M, Ackermann B, Förster A, Jakubik M, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E, Wirth B. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 2010; 19:1492-506. [PMID: 20097677 DOI: 10.1093/hmg/ddq023] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder determined by functional impairment of alpha-motor neurons within the spinal cord. SMA is caused by functional loss of the survival motor neuron gene 1 (SMN1), whereas disease severity is mainly influenced by the number of SMN2 copies. SMN2, which produces only low levels of full-length mRNA/protein, can be modulated by small molecules and drugs, thus offering a unique possibility for SMA therapy. Here, we analysed suberoylanilide hydroxamic acid (SAHA), a FDA-approved histone deacetylase inhibitor, as potential drug in two severe SMA mouse models each carrying two SMN2 transgenes: US-SMA mice with one SMN2 per allele (Smn(-/-);SMN2(tg/tg)) and Taiwanese-SMA mice with two SMN2 per allele (Smn(-/-);SMN2(tg/wt)), both on pure FVB/N background. The US-SMA mice were embryonically lethal with heterozygous males showing significantly reduced fertility. SAHA treatment of pregnant mothers rescued the embryonic lethality giving rise to SMA offspring. By using a novel breeding strategy for the Taiwanese model (Smn(-/-);SMN2(tg/tg) x Smn(-/+) mice), we obtained 50% SMA offspring that survive approximately 10 days and 50% control carriers in each litter. Treatment with 25 mg/kg twice daily SAHA increased lifespan of SMA mice by 30%, significantly improved motor function abilities, reduced degeneration of motor neurons within the spinal cord and increased the size of neuromuscular junctions and muscle fibers compared with vehicle-treated SMA mice. SMN RNA and protein levels were significantly elevated in various tissues including spinal cord and muscle. Hence, SAHA, which lessens the progression of SMA, might be suitable for SMA therapy.
Collapse
Affiliation(s)
- Markus Riessland
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A. Multiple stimulations for muscle–nerve–blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model. Histochem Cell Biol 2009; 132:59-70. [DOI: 10.1007/s00418-009-0585-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
|
15
|
Vieira NM, Bueno CR, Brandalise V, Moraes LV, Zucconi E, Secco M, Suzuki MF, Camargo MM, Bartolini P, Brum PC, Vainzof M, Zatz M. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells 2008; 26:2391-8. [PMID: 18583542 DOI: 10.1634/stemcells.2008-0043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.
Collapse
Affiliation(s)
- Natássia M Vieira
- Human Genome Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gavrilina TO, McGovern VL, Workman E, Crawford TO, Gogliotti RG, DiDonato CJ, Monani UR, Morris GE, Burghes AHM. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum Mol Genet 2008; 17:1063-75. [PMID: 18178576 DOI: 10.1093/hmg/ddm379] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron gene (SMN1) and retention of the SMN2 gene. The copy number of SMN2 affects the amount of SMN protein produced and the severity of the SMA phenotype. While loss of mouse Smn is embryonic lethal, two copies of SMN2 prevents this embryonic lethality resulting in a mouse with severe SMA that dies 5 days after birth. Here we show that expression of full-length SMN under the prion promoter (PrP) rescues severe SMA mice. The PrP results in high levels of SMN in neurons at embryonic day 15. Mice homozygous for PrP-SMN with two copies of SMN2 and lacking mouse Smn survive for an average of 210 days and lumbar motor neuron root counts in these mice were normal. Expression of SMN solely in skeletal muscle using the human skeletal actin (HSA) promoter resulted in no improvement of the SMA phenotype or extension of survival. One HSA line displaying nerve expression of SMN did affect the SMA phenotype with mice living for an average of 160 days. Thus, we conclude that expression of full-length SMN in neurons can correct the severe SMA phenotype in mice. Furthermore, a small increase of SMN in neurons has a substantial impact on survival of SMA mice while high SMN levels in mature skeletal muscle alone has no impact.
Collapse
Affiliation(s)
- Tatiana O Gavrilina
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wirth PhD B, Riessland Msc M, Hahnen MBA E. Drug discovery for spinal muscular atrophy. Expert Opin Drug Discov 2007; 2:437-51. [DOI: 10.1517/17460441.2.4.437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Danièle N, Richard I, Bartoli M. Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol 2007; 39:1608-24. [PMID: 17339125 DOI: 10.1016/j.biocel.2007.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are hereditary degenerative muscle diseases that cause life-long disability in patients. They comprise the well-known Duchenne Muscular Dystrophy (DMD) but also the group of Limb Girdle Muscular Dystrophies (LGMD) which account for a third to a fourth of DMD cases. From the clinical point of view, LGMD are characterised by predominant effects on the proximal limb muscles. The LGMD group is still growing today and consists of 19 autosomal dominant and recessive forms (LGMD1A to LGMD1G and LGMD2A to LGMD2M). The proteins involved are very diverse and include sarcomeric, sarcolemmal and enzymatic proteins. With respect to this variability and in line with the intense search for a potent therapeutic approach for DMD, many different strategies have been tested in rodent models. These include replacing the lost function by gene transfer or stem cell transplantation, using a related protein for functional substitution, increasing muscle mass, or blocking the molecular pathological mechanisms by pharmacological means to alleviate the symptoms. The purpose of this review is to summarize current data arising from these preclinical studies and to examine the potential of the tested strategies to lead to clinical applications.
Collapse
|
19
|
Shefer G, Yablonka-Reuveni Z. Reflections on lineage potential of skeletal muscle satellite cells: do they sometimes go MAD? Crit Rev Eukaryot Gene Expr 2007; 17:13-29. [PMID: 17341181 PMCID: PMC3276064 DOI: 10.1615/critreveukargeneexpr.v17.i1.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal muscle growth and repair is supported by satellite cells--myogenic progenitors positioned between the myofiber basal lamina and plasma membrane. In adult muscles, satellite cells are quiescent but become activated and contribute differentiated progeny when myofiber repair is needed. The development of cells expressing osteogenic and adipogenic genes alongside myoblasts in myofiber cultures raised the hypothesis that satellite cells possess mesenchymal plasticity. Clonal studies of myofiber-associated cells further suggest that satellite cell myogeneity and diversion into Mesenchymal Alternative Differentiation (MAD) occur in vitro by a stochastic mechanism. However, in vivo this potential may be executed only when myogenic signals are impaired and the muscle tissue is compromised. Such a mechanism may contribute to the increased adiposity of aging muscles. Alternatively, it is possible that mesenchymal interstitial cells (sometimes co-isolated with myofibers), rather than satellite cells, account for the nonmyogenic cells observed in myogenic cultures. Herein, we first elaborate on the myogenic potential of satellite cells. We then introduce definitions of adult stem-cell unipotency, multipotency, and plasticity, as well as elaborate on recent studies that established the status of satellite cells as myogenic stem cells. Last, we highlight evidence in favor of satellite cell plasticity and emerging hurdles restraining this hypothesis.
Collapse
Affiliation(s)
- Gabi Shefer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|