1
|
Oss-Ronen L, Redden RA, Lelkes PI. Enhanced Induction of Definitive Endoderm Differentiation of Mouse Embryonic Stem Cells in Simulated Microgravity. Stem Cells Dev 2020; 29:1275-1284. [PMID: 32731794 DOI: 10.1089/scd.2020.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Directed in vitro differentiation of pluripotent stem cells toward definitive endoderm (DE) offers great research and therapeutic potential since these cells can further differentiate into cells of the respiratory and gastrointestinal tracts, as well as associated organs such as pancreas, liver, and thyroid. We hypothesized that culturing mouse embryonic stem cells (mESCs) under simulated microgravity (SMG) conditions in rotary bioreactors (BRs) will enhance the induction of directed DE differentiation. To test our hypothesis, we cultured the cells for 6 days in two-dimensional monolayer colony cultures or as embryoid bodies (EBs) in either static conditions or, dynamically, in the rotary BRs. We used flow cytometry and quantitative polymerase chain reaction to analyze the expression of marker proteins and genes, respectively, for pluripotency (Oct3/4) and mesendodermal (Brachyury T), endodermal (FoxA2, Sox17, CxCr4), and mesodermal (Vimentin, Meox1) lineages. Culture in the form of EBs in maintenance media in the presence of leukemia inhibitory factor, in static or SMG conditions, induced expression of some of the differentiation markers, suggesting heterogeneity of the cells. This is in line with previous studies showing that differentiation is initiated as cells are aggregated into EBs even without supplementing differentiation factors to the media. Culturing EBs in static conditions in differentiation media (DM) in the presence of activin A reduced Oct3/4 expression and significantly increased Brachyury T and CxCr4 expression, but downregulated FoxA2 and Sox17. However, culturing in SMG BRs in DM upregulated Brachyury T and all of the DE markers and reduced Oct3/4 expression, indicating the advantage of dynamic cultures in BRs to specifically enhance directed DE differentiation. Given the potential discrepancies between the SMG conditions on earth and actual microgravity conditions, as observed in other studies, future experiments in space flight are required to validate the effects of reduced gravity on mESC differentiation.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Robert A Redden
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Maloy MH, Ferrer MA, Parashurama N. In Vivo Differentiation of Stem Cell-derived Human Pancreatic Progenitors to Treat Type 1 Diabetes. Stem Cell Rev Rep 2020; 16:1139-1155. [PMID: 32844324 DOI: 10.1007/s12015-020-10018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the loss of the pancreatic β-cells. The autoimmune destruction of the β-cells causes the loss of insulin production from the islets of the pancreas, resulting in the loss of blood glucose regulation. This loss of regulation, if not treated, can lead to a plethora of long-term complications in patients. Subsequently, T1DM patients rely on the administration of exogenous insulin sources to maintain their blood glucose levels. In this review, we summarize the history of T1DM therapy and current treatment options. Although treatments for T1DM have progressed substantially, none of the available treatment options allow the patient to live autonomously. Therefore, the challenge to develop a therapy that will fully reverse the disease still remains. A promising field of T1DM therapies is cell replacement therapies derived from human pluripotent stem cells. Here, we specifically review studies that employ stem-cell derived pancreatic progenitors transplanted for in vivo differentiation/maturation and discuss, in detail, the complications that arise post transplantation, including heterogeneity, graft immaturity, and host foreign bodyresponse. We also discuss efforts to induce human stem cell-derived mature β-cells in vitro and compare strategies regarding transplantation of pancreatic progenitors versus mature β-cells cells. Finally, we review key approaches that address critical limitations of in vivo progenitor differentiation including vascularization, oxygenation, and transplant location. The field of islet replacement therapy has made tremendous progress in the last two decades. If the strengths and limitations of the field continue to be identified and addressed, future studies will lead to an ideal treatment for T1DM. Graphical abstract.
Collapse
Affiliation(s)
- Mitchell H Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), 907 Furnas Hall, Buffalo, NY, 14260, USA
| | - Matthew A Ferrer
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), 907 Furnas Hall, Buffalo, NY, 14260, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), 907 Furnas Hall, Buffalo, NY, 14260, USA. .,Department of Biomedical Engineering, University at Buffalo, (State University of New York), 323 Bonner Hall, Buffalo, NY, 14260, USA. .,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Willadsen M, Chaise M, Yarovoy I, Zhang AQ, Parashurama N. Engineering molecular imaging strategies for regenerative medicine. Bioeng Transl Med 2018; 3:232-255. [PMID: 30377663 PMCID: PMC6195904 DOI: 10.1002/btm2.10114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The reshaping of the world's aging population has created an urgent need for therapies for chronic diseases. Regenerative medicine offers a ray of hope, and its complex solutions include material, cellular, or tissue systems. We review basics of regenerative medicine/stem cells and describe how the field of molecular imaging, which is based on quantitative, noninvasive, imaging of biological events in living subjects, can be applied to regenerative medicine in order to interrogate tissues in innovative, informative, and personalized ways. We consider aspects of regenerative medicine for which molecular imaging will benefit. Next, genetic and nanoparticle-based cell imaging strategies are discussed in detail, with modalities like magnetic resonance imaging, optical imaging (near infra-red, bioluminescence), raman microscopy, and photoacoustic microscopy), ultrasound, computed tomography, single-photon computed tomography, and positron emission tomography. We conclude with a discussion of "next generation" molecular imaging strategies, including imaging host tissues prior to cell/tissue transplantation.
Collapse
Affiliation(s)
- Matthew Willadsen
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Marc Chaise
- Jacobs School of Medicine and Biomedical Sciences University at Buffalo State University of New York 955 Main St., Buffalo, New York 14203
| | - Iven Yarovoy
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - An Qi Zhang
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228.,Department of Biomedical Engineering University at Buffalo, State University of New York, Bonner Hall Buffalo New York 14228.,Clinical and Translation Research Center (CTRC) University at Buffalo, State University of New York 875 Ellicott St., Buffalo, New York 14203
| |
Collapse
|
4
|
Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017; 11:46. [PMID: 29204185 PMCID: PMC5702480 DOI: 10.1186/s13036-017-0081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Liver disease contributes significantly to global disease burden and is associated with rising incidence and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative medicine, will counter these trends. Main body Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal publications, recent progress within these fields, and commercialization efforts. The areas reviewed include fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells, pluripotent stem cells, hepatic microdevices, and decellularized liver grafts. Conclusion These studies highlight the creative directions of liver regenerative medicine, the collective efforts of scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will impact patients with liver disease.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA
| | - Janet Oluwole
- Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| |
Collapse
|
5
|
Shirouzu Y, Yanai G, Yang KC, Sumi S. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cell Reprogram 2017; 18:171-86. [PMID: 27253628 DOI: 10.1089/cell.2015.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nodal/activin signaling is indispensable for embryonic development. We examined what activin does to the embryoid bodies (EBs) produced from mouse embryonic stem cells (mESCs) expressing an epiblast marker. The EBs were produced by culturing mESCs by the hanging drop method for 24 hours. The resulting EBs were transferred onto gelatin-coated dishes and allowed to further differentiate. The 24-hour EBs showed a stronger expression of fibroblast growth factor (FGF)5 and Brachyury (specific to the epiblast) in comparison with mESCs. Treating the transferred EBs with activin A maintained transcript levels of FGF5 and Oct4, while inhibiting definitive endoderm differentiation. The activin A treatment reversed the endoderm differentiation induced by retinoic acid (RA), while the inhibition of nodal/activin signaling promoted RA-induced endoderm differentiation. Inhibition of nodal/activin signaling in EBs, including epiblast-like cells, promotes differentiation into the endoderm, facilitating the transition from the pluripotent state to specification of the endoderm.
Collapse
Affiliation(s)
- Yasumasa Shirouzu
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Goichi Yanai
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Kai-Chiang Yang
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Shoichiro Sumi
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| |
Collapse
|
6
|
Han YJ, Kang YH, Shivakumar SB, Bharti D, Son YB, Choi YH, Park WU, Byun JH, Rho GJ, Park BW. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro. Int J Med Sci 2017; 14:1418-1429. [PMID: 29200956 PMCID: PMC5707759 DOI: 10.7150/ijms.22152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023] Open
Abstract
We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.
Collapse
Affiliation(s)
- Young-Jin Han
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Sarath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Uk Park
- Department of Dental Technology, Jinju Health College, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| |
Collapse
|
7
|
Ahn BC, Parashurama N, Patel M, Ziv K, Bhaumik S, Yaghoubi SS, Paulmurugan R, Gambhir SS. Noninvasive reporter gene imaging of human Oct4 (pluripotency) dynamics during the differentiation of embryonic stem cells in living subjects. Mol Imaging Biol 2015; 16:865-76. [PMID: 24845530 DOI: 10.1007/s11307-014-0744-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Human pluripotency gene networks (PGNs), controlled in part by Oct4, are central to understanding pluripotent stem cells, but current fluorescent reporter genes (RGs) preclude noninvasive assessment of Oct4 dynamics in living subjects. PROCEDURES To assess Oc4 activity noninvasively, we engineered a mouse embryonic stem cell line which encoded both a pOct4-hrluc (humanized renilla luciferase) reporter and a pUbi-hfluc2-gfp (humanized firefly luciferase 2 fused to green fluorescent protein) reporter. RESULTS In cell culture, pOct4-hRLUC activity demonstrated a peak at 48 h (day 2) and significant downregulation by 72 h (day 3) (p=0.0001). Studies in living subjects demonstrated significant downregulation in pOct4-hRLUC activity between 12 and 144 h (p = 0.001) and between 12 and 168 h (p = 0.0003). pOct4-hRLUC signal dynamics after implantation was complex, characterized by transient upregulation after initial downregulation in all experiments (n = 10, p = 0.01). As expected, cell culture differentiation of the engineered mouse embryonic stem cell line demonstrated activation of mesendodermal, mesodermal, endodermal, and ectodermal master regulators of differentiation, indicating potency to form all three germ layers. CONCLUSIONS We conclude that the Oct4-hrluc RG system enables noninvasive Oct4 imaging in cell culture and in living subjects.
Collapse
Affiliation(s)
- Byeong-Cheol Ahn
- Molecular Imaging Program @Stanford (MIPS), Department of Radiology, Division of Nuclear Medicine, James H. Clark Center, Stanford School of Medicine, Stanford University, 318 Campus Drive, E153, Stanford, CA, 94305-5427, USA,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee SW, Min SO, Bak SY, Hwang HK, Kim KS. Efficient endodermal induction of human adipose stem cells using various concentrations of Activin A for hepatic differentiation. Biochem Biophys Res Commun 2015. [PMID: 26208453 DOI: 10.1016/j.bbrc.2015.07.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Activin A, which is a signaling molecule similar to Nodal, rapidly promotes endoderm induction of both embryonic stem (ES) cells and MSCs. Protocols for hepatic induction exhibit differences in efficiency and reproducibility depending on the specific methods or sources of MSCs. We characterized the effects of Activin A concentration on induction efficiency during hepatic differentiation of MSCs. Human MSCs (hMSCs) were differentiated into a hepatic lineage via a three-step protocol. Cells were first cultured in fetal bovine serum-free MSCs conditioned medium supplemented with Activin A (20, 50, or 100 ng/mL) for 3 days followed by treatment with additional agents. RT-PCR analysis, immunocytochemistry assays, periodic acid and Schiff's solution staining, and ELISAs were performed to confirm hepatic induction of hMSCs. Expression of genes related to the primitive foregut endoderm was observed in cells treated with higher concentration of Activin A. Gene expression related to functional primitive hepatocytes was observed in the early phases of hepatic differentiation. During the early period of the differentiation protocol, greater albumin secretion was observed when cells were treated with higher concentrations of Activin A. CONCLUSION Thus, Activin A concentration affects the rate of endoderm induction of hMSCs, and at higher concentrations in vitro.
Collapse
Affiliation(s)
- Sang Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Republic of Korea
| | - Seon Ok Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Republic of Korea
| | - Seon Young Bak
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Republic of Korea
| | - Ho Kyoung Hwang
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Republic of Korea; Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Saito M, Kaneda A, Shigeto H, Hanata N, Otokuni K, Matsuoka H. Development of an optimized 5-stage protocol for the in vitro preparation of insulin-secreting cells from mouse ES cells. Cytotechnology 2015; 68:987-98. [PMID: 25749915 DOI: 10.1007/s10616-015-9853-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/04/2015] [Indexed: 12/12/2022] Open
Abstract
In order to produce insulin-secreting cells with a high value of glucose-stimulated insulin secretion (GSIS) from mouse embryonic stem cells, we have developed an optimized 5-stage protocol by referring to culture conditions so far reported elsewhere. This protocol is characterized by 4 points: (1) use of an activin-free medium in the first stage, (2) use of gelatin/fibronectin coated culture dishes in 1-4 stages throughout, (3) removal of undifferentiated cells by cell sorter at the end of 4th stage, and (4) sedimental culture in the 5th stage. GSIS value of the produced cells reached 2.4, that was at a higher rank of those so far reported. The produced cells were transplanted in diabetes model mice but no remedy effect was observed. Then transplantation was conducted in pre-diabetes model mice, in which GSIS was impaired without affecting insulin producing function. The transplantation of 5 × 10(6) cells resulted in a marked improvement of glucose tolerance within 20 days. This effect decreased but was still observed at 120 days post-transplantation. This demonstrates the feasibility of the novel optimized protocol.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Asako Kaneda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hajime Shigeto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Nobuaki Hanata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiko Otokuni
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hideaki Matsuoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
10
|
Transient Downregulation of Nanog and Oct4 Induced by DETA/NO Exposure in Mouse Embryonic Stem Cells Leads to Mesodermal/Endodermal Lineage Differentiation. Stem Cells Int 2014; 2014:379678. [PMID: 25544848 PMCID: PMC4269087 DOI: 10.1155/2014/379678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023] Open
Abstract
The function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC) lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols. Confocal analysis of cells undergoing directed differentiation shows that the majority of cells expressing Nanog express also endoderm genes such as Gata4 and FoxA2 (75.4% and 96.2%, resp.). Simultaneously, mRNA of mesodermal markers Flk1 and Mef2c are also regulated by the treatment. Acetylated histone H3 occupancy at the promoter of Nanog is involved in the process of reexpression. Furthermore, Nanog binding to the promoter of Brachyury leads to repression of this gene, thus disrupting mesendoderm transition.
Collapse
|
11
|
Kim SJ, Park MH, Moon HJ, Park JH, Ko DY, Jeong B. Polypeptide thermogels as a three dimensional culture scaffold for hepatogenic differentiation of human tonsil-derived mesenchymal stem cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17034-17043. [PMID: 25192309 DOI: 10.1021/am504652y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tonsil-derived mesenchymal stem cells (TMSCs) were investigated for hepatogenic differentiation in the 3D matrixes of poly(ethylene glycol)-b-poly(l-alanine) (PEG-L-PA) thermogel. The diblock polymer formed β-sheet based fibrous nanoassemblies in water, and the aqueous polymer solution undergoes sol-to-gel transition as the temperature increases in a concentration range of 5.0-8.0 wt %. The cell-encapsulated 3D matrix was prepared by increasing the temperature of the cell-suspended PEG-L-PA aqueous solution (6.0 wt %) to 37 °C. The gel modulus at 37 °C was about 1000 Pa, which was similar to that of decellularized liver tissue. Cell proliferation, changes in cell morphology, hepatogenic biomarker expressions, and hepatocyte-specific biofunctions were compared for the following 3D culture systems: TMSC-encapsulated thermogels in the absence of hepatogenic growth factors (protocol M), TMSC-encapsulated thermogels where hepatogenic growth factors were supplied from the medium (protocol MGF), and TMSC-encapsulated thermogels where hepatogenic growth factors were coencapsulated with TMSCs during the sol-to-gel transition (protocol GGF). The spherical morphology and size of the encapsulated cells were maintained in the M system during the 3D culture period of 28 days, whereas the cells changed their morphology and significant aggregation of cells was observed in the MGF and GGF systems. The hepatocyte-specific biomarker expressions and metabolic functions were negligible for the M system. However, hepatogenic genes of albumin, cytokeratin 18 (CK-18), and hepatocyte nuclear factor 4α (HNF 4α) were significantly expressed in both MGF and GGF systems. In addition, production of albumin and α-fetoprotein was also significantly observed in both MGF and GGF systems. The uptake of cardiogreen and low-density lipoprotein, typical metabolic functions of hepatocytes, was apparent for MGF and GGF. The above data indicate that the 3D culture system of PEG-L-PA thermogels provides cytocompatible microenvironments for hepatogenic differentiation of TMSCs. In particular, the successful results of the GGF system suggest that the PEG-L-PA thermogel can be a promising injectable tissue engineering system for liver tissue regeneration after optimizing the aqueous formulation of TMSCs, hepatogenic growth factors, and other biochemicals.
Collapse
Affiliation(s)
- Seung-Jin Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Global Top 5 Research Program, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Lee HJ, Jung J, Cho KJ, Lee CK, Hwang SG, Kim GJ. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation 2012; 84:223-31. [PMID: 22885322 DOI: 10.1016/j.diff.2012.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 03/24/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are powerful sources for cell therapy in regenerative medicine. The capability to obtain effective stem cell-derived hepatocytes would improve cell therapy for liver diseases. Recently, various placenta-derived stem cells (PDSCs) depending on the localization of placenta have been suggested as alternative sources of stem cells are similar to bone marrow-derived MSC (BM-MSCs) and adipose-derived MSC (AD-MSCs). However, comparative studies for the potentials of the hepatogenic differentiation among various MSCs largely lacking. Therefore, we investigated to compare the potentials for hepatogenic differentiation of PDSCs with BM-MSCs, AD-MSCs, and UCB-MSCs. Several MSCs were isolated from human term placenta, adipose tissue, and umbilical cord blood and characterized isolated MSCs and BM-MSCs was performed by quantitative reverse transcription-PCR (RT-PCR) and special stains after mesodermal differentiation. The hepatogenic potential of PDSCs was compared with AD-MSCs, UCB-MSCs, and BM-MSCs using RT-PCR, PAS stain, ICG up-take assays, albumin expression, urea production, and cytokine assays. MSCs isolated from different tissues all presented similar characteristics of MSCs. However, the proliferative potential of PDSCs and the expression of hepatogenic markers in differentiated PDSCs were higher than other MSCs. Interestingly, the expression of hepatocyte growth factor (HGF) increased in PDSCs after hepatogenic differentiation. Interestingly, stem cell factor (SCF) expression in chorionic plate-derived MSCs, one of the PDSCs, was significantly higher than in the other PDSCs. Taken together, the results of the present study suggest that MSCs isolated from various adult tissues can be induced to undergo hepatogenic differentiation in vitro, and that PDSCs may have the greatest potential for hepatogenic differentiation and proliferation. Therefore, PDSCs could be used as a stem cell source for cell therapy in liver diseases.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- CHA Placenta Institute, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Tran NT, Trinh QM, Lee GM, Han YM. Efficient differentiation of human pluripotent stem cells into mesenchymal stem cells by modulating intracellular signaling pathways in a feeder/serum-free system. Stem Cells Dev 2011; 21:1165-75. [PMID: 21793661 DOI: 10.1089/scd.2011.0346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) derived from human pluripotent stem cells (hPSC-derived MSCs) will be one promising alternative cell source for MSC-based therapies. Here, an efficient protocol is demonstrated for generating hPSC-derived MSCs under a feeder-free culture system by regulating signaling pathways. Simultaneous treatments with Activin A, BIO (6-bromoindirubin-3'-oxime), and bone morphogenetic protein 4 (ABB) activated the transcription of mesoderm-lineage genes such as T, MIXL1, and WNT3 in hPSCs. The ABB-treated hPSCs could develop into CD105(+) cells with a high efficiency of 20% in the MSC-induction medium. The properties of the hPSC-derived CD105(+) cells were similar to those of adult MSCs in terms of surface antigens. Also, hPSC-derived MSCs had the potential to differentiate into adipocytes, osteoblasts, and chondrocytes in vitro. The results demonstrated that functional MSCs could be generated efficiently from hPSCs by the combined modulation of signaling pathways.
Collapse
Affiliation(s)
- Ngoc-Tung Tran
- Department of Biological Sciences and Center for Stem Cell Differentiation, KAIST (Korean Advance Institute of Sciences and Technology), Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
14
|
Erb TM, Schneider C, Mucko SE, Sanfilippo JS, Lowry NC, Desai MN, Mangoubi RS, Leuba SH, Sammak PJ. Paracrine and epigenetic control of trophectoderm differentiation from human embryonic stem cells: the role of bone morphogenic protein 4 and histone deacetylases. Stem Cells Dev 2011; 20:1601-14. [PMID: 21204619 DOI: 10.1089/scd.2010.0281] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of paracrine and epigenetic control of trophectoderm (TE) differentiation is limited by available models of preimplantation human development. Simple, defined media for selective TE differentiation of human embryonic stem cells (hESCs) were developed, enabling mechanistic studies of early placental development. Paracrine requirements of preimplantation human development were evaluated with hESCs by measuring lineage-specific transcription factor expression levels in single cells and morphological transformation in response to selected paracrine and epigenetic modulators. Bone morphogenic protein 4 (BMP4) addition to feeder-free pluripotent stem cells on matrigel frequently formed CDX2-positive TE. However, BMP4 or activin A inhibition alone also produced a mix of mesoderm and extraembryonic endoderm under these conditions. Further, BMP4 failed to form TE from adherent hESC maintained in standard feeder-dependent monolayers. Given that the efficiency and selectivity of BMP4-induced TE depended on medium components, we developed a basal medium containing insulin and heparin. In this medium, BMP4 induction of TE was dose dependent and with activin A inhibition by SB431542 (SB), approached 100% of cells. This paracrine stimulation of pluripotent cells transformed colony morphology from a cuboidal to squamous epithelium quantitatively on day 3, and produced significant multinucleated syncytiotrophoblasts by day 8. Addition of trichostatin A, a histone deacetylase (HDAC) inhibitor, reduced HDAC3, histone H3K9 methylation, and slowed differentiation in a dose-dependent manner. Modulators of BMP4- or HDAC-dependent signaling might adversely influence the timing and viability of early blastocyst developed in vitro. Since blastocyst development is synchronized to uterine receptivity, epigenetic regulators of TE differentiation might adversely affect implantation in vivo.
Collapse
Affiliation(s)
- Teresa M Erb
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Hospital of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pimton P, Sarkar S, Sheth N, Perets A, Marcinkiewicz C, Lazarovici P, Lelkes PI. Fibronectin-mediated upregulation of α5β1 integrin and cell adhesion during differentiation of mouse embryonic stem cells. Cell Adh Migr 2011; 5:73-82. [PMID: 20962574 DOI: 10.4161/cam.5.1.13704] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem (ES) cells have a broad potential application in regenerative medicine and can be differentiated into cells of all three germ layers. Adhesion of ES cells to extracellular matrix (ECM) proteins is essential for the differentiation pathway; Cell-ECM adhesion is mediated by integrins that have the ability to activate many intracellular signaling pathways. Therefore, we hypothesize that the expression and function of integrin receptors is a critical step in ES differentiation. Using functional cell adhesion assays, our study demonstrates that α5β1 is a major functional integrin receptor expressed on the cell surface of undifferentiated mouse ES-D3 cells, which showed significantly higher binding to fibronectin as compared to collagens. This adhesion was specific mediated by integrin α5β1 as evident from the inhibition with a disintegrin selective for this particular integrin. Differentiation of ES-D3 cells on fibronectin or on a collagen type1/fibronectin matrix, caused further selective up-regulation of the α5β1 integrin. Differentiation of the cells, as evaluated by immunofluorescence, FACS analysis and quantitative RT-PCR, was accompanied by the upregulation of mesenchymal (Flk1, isolectin B4, α-SMA, vimentin) and endodermal markers (FoxA2, SOX 17, cytokeratin) in parallel to increased expression of α5β1 integrin. Taken together, the data indicate that fibronectin-mediated, upregulation of α5β1 integrin and adhesion of ES-D3 cells to specific ECM molecules are linked to early stages of mouse embryonic stem cells commitment to meso-endodermal differentiation.
Collapse
Affiliation(s)
- Pimchanok Pimton
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Haque A, Hexig B, Meng Q, Hossain S, Nagaoka M, Akaike T. The effect of recombinant E-cadherin substratum on the differentiation of endoderm-derived hepatocyte-like cells from embryonic stem cells. Biomaterials 2010; 32:2032-42. [PMID: 21163520 DOI: 10.1016/j.biomaterials.2010.11.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 12/20/2022]
Abstract
Generation of specific lineages of cells from embryonic stem (ES) cells is pre-requisite to use these cells in pre-clinical applications. Here, we developed a recombinant E-cadherin substratum for generation of hepatic progenitor populations at single cell level. This artificial acellular feeder layer supports the stepwise differentiation of ES cells to cells with characteristics of definitive endoderm, hepatic progenitor cells, and finally cells with phenotypic and functional characteristics of hepatocytes. The efficient differentiation of hepatic endoderm cells (approximately 55%) together with the absence of neuroectoderm and mesoderm markers suggests the selective induction of endoderm differentiation. The co-expression of E-cahderin and alpha-fetoprotein (approximately 98%) suggests the important role of E-cadherin as a surface marker for the enrichment of hepatic progenitor cells. With extensive expansion, approximately 92% albumin expressing cells can be achieved without any enzymatic stress and cell sorting. Furthermore, these mouse ES cell-derived hepatocyte-like cells showed higher morphological similarities to primary hepatocytes. In conclusion, we demonstrated that E-cadherin substratum can guide differentiation of ES cells into endoderm-derived hepatocyte-like cells. This recombinant extracellular matrix could be effectively used as an in vitro model for studying the mechanisms of early stages of liver development even at single cell level.
Collapse
Affiliation(s)
- Amranul Haque
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Haque MA, Nagaoka M, Hexig B, Akaike T. Artificial extracellular matrix for embryonic stem cell cultures: a new frontier of nanobiomaterials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2010; 11:014106. [PMID: 27877321 PMCID: PMC5090548 DOI: 10.1088/1468-6996/11/1/014106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 02/26/2010] [Accepted: 02/02/2010] [Indexed: 06/06/2023]
Abstract
Nanobiomaterials can play a central role in regenerative medicine and tissue engineering by facilitating cellular behavior and function, such as those where extracellular matrices (ECMs) direct embryonic stem (ES) cell morphogenesis, proliferation, differentiation and apoptosis. However, controlling ES cell proliferation and differentiation using matrices from natural sources is still challenging due to complex and heterogeneous culture conditions. Moreover, the systemic investigation of the regulation of self-renewal and differentiation to lineage specific cells depends on the use of defined and stress-free culture conditions. Both goals can be achieved by the development of biomaterial design targeting ECM or growth factors for ES cell culture. This targeted application will benefit from expansion of ES cells for transplantation, as well as the production of a specific differentiated cell type either by controlling the differentiation in a very specific pathway or by elimination of undesirable cell types.
Collapse
Affiliation(s)
- Md Amranul Haque
- Department of Biomolecular Engineering, Gaduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 226-8501 Yokohama, Japan
| | - Masato Nagaoka
- Department of Biomolecular Engineering, Gaduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 226-8501 Yokohama, Japan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bayar Hexig
- Department of Biomolecular Engineering, Gaduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 226-8501 Yokohama, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Gaduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 226-8501 Yokohama, Japan
| |
Collapse
|
18
|
Sodium butyrate and dexamethasone promote exocrine pancreatic gene expression in mouse embryonic stem cells. Acta Pharmacol Sin 2009; 30:1289-96. [PMID: 19701240 DOI: 10.1038/aps.2009.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM The feasibility of inducing endocrine pancreatic differentiation of embryonic stem (ES) cells has been well documented. However, whether ES cells possess the potential for exocrine pancreatic differentiation requires further exploration. Here, we investigated whether sodium butyrate and glucocorticoids were conducive to the exocrine pancreatic differentiation of ES cells. METHODS E14 mouse ES cells were cultured in suspension to form embryoid bodies (EBs). These EBs were cultured in differentiating medium containing varying concentrations of sodium butyrate. The effects of activinA and dexamethasone (Dex) on exocrine differentiation were also explored. Finally, the combination of sodium butyrate, activinA, and Dex was used to promote the differentiation of exocrine pancreatic cells. Specific exocrine pancreatic gene expression was detected by reverse transcription polymerase chain reaction (RT-PCR) and amylase expression was examined by immunofluorescence staining. Flow cytometry analysis was also performed to determine the percentage of amylase-positive cells after the treatment with activinA, sodium butyrate, and Dex. RESULTS Exposure of ES cells to 1 mmol/L sodium butyrate for 5 days promoted exocrine pancreatic gene expression. Further combination with Dex and other pancreatic-inducing factors, such as activinA, significantly enhanced the mRNA and protein levels of exocrine pancreatic markers. Additionally, flow cytometry revealed that approximately 17% of the final differentiated cells were amylase-positive. CONCLUSION These data indicate that the exocrine pancreatic differentiation of ES cells can be induced by activinA, sodium butyrate, and Dex, providing a potential tool for studying pancreatic differentiation and pancreas-related diseases.
Collapse
|