1
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|
2
|
Recapitulating lipid accumulation and related metabolic dysregulation in human liver-derived organoids. J Mol Med (Berl) 2022; 100:471-484. [PMID: 35059746 DOI: 10.1007/s00109-021-02176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
3
|
Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry. Sci Rep 2020; 10:20053. [PMID: 33208898 PMCID: PMC7674471 DOI: 10.1038/s41598-020-77087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
In order to better understand retinal physiology, alterations to which underlie some ocular diseases, we set out to establish the lipid signature of two fundamental cell types in the retina, Müller Glia and Retinal Ganglion Cells (RGCs). Moreover, we compared the lipid signature of these cells in sections (in situ), as well as after culturing the cells and isolating their cell membranes (in vitro). The lipidome of Müller glia and RGCs was analyzed in porcine retinal sections using Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS). Isolated membranes, as well as whole cells from primary cell cultures of RGCs and Müller glia, were printed onto glass slides using a non-contact microarrayer (Nano Plotter), and a LTQ-Orbitrap XL analyzer was used to scan the samples in negative ion mode, thereafter identifying the RGCs and Müller cells immunohistochemically. The spectra acquired were aligned and normalized against the total ion current, and a statistical analysis was carried out to select the lipids specific to each cell type in the retinal sections and microarrays. The peaks of interest were identified by MS/MS analysis. A cluster analysis of the MS spectra obtained from the retinal sections identified regions containing RGCs and Müller glia, as confirmed by immunohistochemistry in the same sections. The relative density of certain lipids differed significantly (p-value ≤ 0.05) between the areas containing Müller glia and RGCs. Likewise, different densities of lipids were evident between the RGC and Müller glia cultures in vitro. Finally, a comparative analysis of the lipid profiles in the retinal sections and microarrays identified six peaks that corresponded to a collection of 10 lipids characteristic of retinal cells. These lipids were identified by MS/MS. The analyses performed on the RGC layer of the retina, on RGCs in culture and using cell membrane microarrays of RGCs indicate that the lipid composition of the retina detected in sections is preserved in primary cell cultures. Specific lipid species were found in RGCs and Müller glia, allowing both cell types to be identified by a lipid fingerprint. Further studies into these specific lipids and of their behavior in pathological conditions may well help identify novel therapeutic targets for ocular diseases.
Collapse
|
4
|
Clémot M, Sênos Demarco R, Jones DL. Lipid Mediated Regulation of Adult Stem Cell Behavior. Front Cell Dev Biol 2020; 8:115. [PMID: 32185173 PMCID: PMC7058546 DOI: 10.3389/fcell.2020.00115] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Adult stem cells constitute an important reservoir of self-renewing progenitor cells and are crucial for maintaining tissue and organ homeostasis. The capacity of stem cells to self-renew or differentiate can be attributed to distinct metabolic states, and it is now becoming apparent that metabolism plays instructive roles in stem cell fate decisions. Lipids are an extremely vast class of biomolecules, with essential roles in energy homeostasis, membrane structure and signaling. Imbalances in lipid homeostasis can result in lipotoxicity, cell death and diseases, such as cardiovascular disease, insulin resistance and diabetes, autoimmune disorders and cancer. Therefore, understanding how lipid metabolism affects stem cell behavior offers promising perspectives for the development of novel approaches to control stem cell behavior either in vitro or in patients, by modulating lipid metabolic pathways pharmacologically or through diet. In this review, we will first address how recent progress in lipidomics has created new opportunities to uncover stem-cell specific lipidomes. In addition, genetic and/or pharmacological modulation of lipid metabolism have shown the involvement of specific pathways, such as fatty acid oxidation (FAO), in regulating adult stem cell behavior. We will describe and compare findings obtained in multiple stem cell models in order to provide an assessment on whether unique lipid metabolic pathways may commonly regulate stem cell behavior. We will then review characterized and potential molecular mechanisms through which lipids can affect stem cell-specific properties, including self-renewal, differentiation potential or interaction with the niche. Finally, we aim to summarize the current knowledge of how alterations in lipid homeostasis that occur as a consequence of changes in diet, aging or disease can impact stem cells and, consequently, tissue homeostasis and repair.
Collapse
Affiliation(s)
- Marie Clémot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Park JY, Jeong AL, Joo HJ, Han S, Kim SH, Kim HY, Lim JS, Lee MS, Choi HK, Yang Y. Development of suspension cell culture model to mimic circulating tumor cells. Oncotarget 2018; 9:622-640. [PMID: 29416640 PMCID: PMC5787494 DOI: 10.18632/oncotarget.23079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
Circulating tumor cells (CTCs) are essential for the establishment of distant metastasis. Numerous studies have characterized CTCs as metastatic precursors; however, the molecular nature of CTCs has not been completely revealed yet due to the low number of CTCs in the blood stream. As an alternative approach, we developed a long-term suspension cell culture model using human breast cancer cell lines to mimic CTCs. We found that more than 40 passaged suspension cells acquired the ability to enhance metastasis like cancer stem cells. To identify molecular changes acquired during the suspension cell culture, we analyzed metabolic and lipidomic profiles as well as transcriptome in MDA-MB-468 suspension cells. Glutamate and leucine levels increased in suspension cells, and cholesterol synthesis pathway was altered. The inhibition of glutamate metabolic pathway decreased the proliferation of suspension cells compared to that of adherent cells. In the lipidomic profile, PC species containing long chain and polyunsaturated fatty acids increased in suspension cells and these species could be authentic and specific biomarkers for highly metastatic cancers. As this CTC-mimicking suspension cell culture model may easily apply to various types of cancer, we suggest this model as a great tool to develop therapeutic targets and drugs to eradicate metastatic cancer cells.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| | - Ae Lee Jeong
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| | - Hyun Jeong Joo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| | - So-Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hye-Youn Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04312, Republic of Korea
| |
Collapse
|
6
|
Shoemaker LD, Kornblum HI. Neural Stem Cells (NSCs) and Proteomics. Mol Cell Proteomics 2015; 15:344-54. [PMID: 26494823 PMCID: PMC4739658 DOI: 10.1074/mcp.o115.052704] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 01/09/2023] Open
Abstract
Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function.
Collapse
Affiliation(s)
- Lorelei D Shoemaker
- From the ‡Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University, 300 Pasteur Drive, Stanford, CA 94305
| | - Harley I Kornblum
- §NPI-Semel Institute for Neuroscience & Human Behavior, Departments of Psychiatry and Biobehavioral Sciences, and of Molecular and Medical Pharmacology, The Molecular Biology Institute, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los, Angeles, CA 90095
| |
Collapse
|
7
|
|
8
|
|