1
|
Irwin-Huston JM, Bourebaba L, Bourebaba N, Tomal A, Marycz K. Sex hormone-binding globulin promotes the osteogenic differentiation potential of equine adipose-derived stromal cells by activating the BMP signaling pathway. Front Endocrinol (Lausanne) 2024; 15:1424873. [PMID: 39483986 PMCID: PMC11524885 DOI: 10.3389/fendo.2024.1424873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Musculoskeletal injuries and chronic degenerative diseases pose significant challenges in equine health, impacting performance and overall well-being. Sex Hormone-Binding Globulin (SHBG) is a glycoprotein determining the bioavailability of sex hormones in the bloodstream, and exerting critical metabolic functions, thus impacting the homeostasis of many tissues including the bone. Methods In this study, we investigated the potential role of SHBG in promoting osteogenesis and its underlying mechanisms in a model of equine adipose-derived stromal cells (ASCs). An SHBG-knocked down model has been established using predesigned siRNA, and cells subjected to osteogenic induction medium in the presence of exogenous SHBG protein. Changes in differentiation events where then screened using various analytical methods. Results We demonstrated that SHBG treatment enhances the expression of key osteoconductive regulators in equine ASCs CD34+ cells, suggesting its therapeutic potential for bone regeneration. Specifically, SHBG increased the cellular expression of BMP2/4, osteocalcin (OCL), alkaline phosphatase (ALP), and osteopontin (OPN), crucial factors in early osteogenesis. Furthermore, SHBG treatment maintained adequate apoptosis and enhanced autophagy during osteogenic differentiation, contributing to bone formation and remodeling. SHBG further targeted mitochondrial dynamics, and promoted the reorganization of the mitochondrial network, as well as the expression of dynamics mediators including PINK, PARKIN and MFN1, suggesting its role in adapting cells to the osteogenic milieu, with implications for osteoblast maturation and differentiation. Conclusion Overall, our findings provide novel insights into SHBG's role in bone formation and suggest its potential therapeutic utility for bone regeneration in equine medicine.
Collapse
Affiliation(s)
- Jennifer M. Irwin-Huston
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Tong Y, Yuan J, Li Z, Deng C, Cheng Y. Drug-Loaded Bioscaffolds for Osteochondral Regeneration. Pharmaceutics 2024; 16:1095. [PMID: 39204440 PMCID: PMC11360256 DOI: 10.3390/pharmaceutics16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| |
Collapse
|
3
|
Varma S, Molangiri A, Mudavath S, Ananthan R, Rajanna A, Duttaroy AK, Basak S. Exposure to BPA and BPS during pregnancy disrupts the bone mineralization in the offspring. Food Chem Toxicol 2024; 189:114772. [PMID: 38821392 DOI: 10.1016/j.fct.2024.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Exposure to plastic-derived estrogen-mimicking endocrine-disrupting bisphenols can have a long-lasting effect on bone health. However, gestational exposure to bisphenol A (BPA) and its analogue, bisphenol S (BPS), on offspring's bone mineralization is unclear. The effects of in-utero bisphenol exposure were examined on the offspring's bone parameters. BPA and BPS (0.0, 0.4 μg/kg bw) were administered to pregnant Wistar rats via oral gavage from gestational day 4-21. Maternal exposure to BPA and BPS increased bone mineral content and density in the offspring aged 30 and 90 days (P < 0.05). Plasma analysis revealed that alkaline phosphatase, and Gla-type osteocalcin were significantly elevated in the BPS-exposed offspring (P < 0.05). The expression of BMP1, BMP4, and their signaling mediators SMAD1 mRNAs were decreased in BPS-exposed osteoblast SaOS-2 cells (P < 0.05). The expression of extracellular matrix proteins such as ALPL, COL1A1, DMP1, and FN1 were downregulated (P < 0.05). Bisphenol co-incubation with noggin decreased TGF-β1 expression, indicating its involvement in bone mineralization. Altered mineralization could be due to dysregulated expression of bone morphogenetic proteins and signalling mediators in the osteoblast cells. Thus, bisphenol exposure during gestation altered growth and bone mineralization in the offspring, possibly by modulating the expression of Smad-dependent BMP/TGF-β1 signalling mediators.
Collapse
Affiliation(s)
- Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Archana Molangiri
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Sreedhar Mudavath
- Food Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Rajendran Ananthan
- Food Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ajumeera Rajanna
- Cell Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
4
|
Feng S, Feng Z, Wei Y, Zheng X, Deng Z, Liao Z, Jin Y, Chen R, Zhao L. EEF1B2 regulates bone marrow-derived mesenchymal stem cells bone-fat balance via Wnt/β-catenin signaling. Cell Mol Life Sci 2024; 81:260. [PMID: 38878096 PMCID: PMC11335296 DOI: 10.1007/s00018-024-05297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/25/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchymal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expression was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and mineralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of β-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.
Collapse
Affiliation(s)
- Shuhao Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zihang Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Yiran Wei
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Xiaoyong Zheng
- Orthopaedic Department, The 4th medical center of Chinese PLA General Hospital, Beijing, 100089, China
| | - Zhonghao Deng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zheting Liao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Yangchen Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ruge Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Liang Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Kim E, Riehl BD, Bouzid T, Yang R, Duan B, Donahue HJ, Lim JY. YAP mechanotransduction under cyclic mechanical stretch loading for mesenchymal stem cell osteogenesis is regulated by ROCK. Front Bioeng Biotechnol 2024; 11:1306002. [PMID: 38274006 PMCID: PMC10809151 DOI: 10.3389/fbioe.2023.1306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
While yes-associated protein (YAP) is now recognized as a potent mechanosensitive transcriptional regulator to affect cell growth and differentiation including the osteogenic transcription of mesenchymal stem cells (MSCs), most studies have reported the YAP mechanosensing of static mechanophysical cues such as substrate stiffness. We tested MSC response to dynamic loading, i.e., cyclic mechanical stretching, and assessed YAP mechanosensing and resultant MSC osteogenesis. We showed that cyclic stretching at 10% strain and 1 Hz frequency triggered YAP nuclear import in MSCs. YAP phosphorylation at S127 and S397, which is required for YAP cytoplasmic retention, was suppressed by cyclic stretch. We also observed that anti-YAP-regulatory Hippo pathway, LATS phosphorylation, was significantly decreased by stretch. We confirmed the stretch induction of MSC osteogenic transcription and differentiation, and this was impaired under YAP siRNA suggesting a key role of YAP dynamic mechanosensing in MSC osteogenesis. As an underlying mechanism, we showed that the YAP nuclear transport by cyclic stretch was abrogated by ROCK inhibitor, Y27632. ROCK inhibitor also impaired the stretch induction of F-actin formation and MSC osteogenesis, thus implicating the role of the ROCK-F-actin cascade in stretch-YAP dynamic mechanosensing-MSC osteogenesis. Our results provide insight into bone tissue engineering and skeletal regenerative capacity of MSCs especially as regards the role of dynamic mechanical loading control of YAP-mediated MSC osteogenic transcription.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bin Duan
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Henry J. Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Santibanez JF, Echeverria C, Millan C, Simon F. Transforming growth factor-beta superfamily regulates mesenchymal stem cell osteogenic differentiation: A microRNA linking. Acta Histochem 2023; 125:152096. [PMID: 37813068 DOI: 10.1016/j.acthis.2023.152096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
The ability to differentiate into cells of different lineages, such as bone cells, is the principal value of adult mesenchymal stem cells (MSCs), which can be used with the final aim of regenerating damaged tissue. Due to its potential use and importance in regenerative medicine and tissue engineering, several questions have been raised regarding the molecular mechanisms of MSC differentiation. As one of the crucial mediators in organism development, the transforming growth factor-beta (TGF-β) superfamily directs MSCs' commitment to selecting differentiation pathways. This review aims to give an overview of the current knowledge on the mechanisms of the TGF-β superfamily in MSCs bone differentiation, with additional insight into the mutual regulation of microRNAs and TGF-β in osteogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, General Gana 1780, Santiago 8370854, Chile.
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine, and Genomic, Faculty of Medicine, University of Atacama, Copiapó 1532502, Chile
| | - Carola Millan
- Department of Sciences, Faculty of Liberal Arts, Adolfo Ibáñez University, Viña del Mar, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Xiong F, Chevalier Y, Klar RM. Parallel Chondrogenesis and Osteogenesis Tissue Morphogenesis in Muscle Tissue via Combinations of TGF-β Supergene Family Members. Cartilage 2023:19476035231196224. [PMID: 37714817 DOI: 10.1177/19476035231196224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE This study aimed to decipher the temporal and spatial signaling code for clinical cartilage and bone regeneration. We investigated the effects of continuous equal dosages of a single, dual, or triplicate growth factor combination of bone morphogenetic protein (BMP)-2, transforming growth factor (TGF)-β3, and/or BMP-7 on muscle tissue over a culturing period. The hypothesis was that specific growth factor combinations at specific time points direct tissue transformation toward endochondral bone or cartilage formation. DESIGN The harvested muscle tissues from F-344 adult male rats were cultured in 96-well plates maintained in a specific medium and cultured at specific conditions. And the multidimensional and multi-time point analyses were performed at both the genetic and protein levels. RESULTS The results insinuate that the application of growth factor stimulates a chaotic tissue response that does not follow a chronological signaling cascade. Both osteogenic and chondrogenic genes showed upregulation after induction, a similar result was also observed in the semiquantitative analysis after immunohistochemical staining against different antigens. CONCLUSIONS The study showed that multiple TGF-β superfamily proteins applied to tissue stimulate developmental tissue processes that do not follow current tissue formation rules. The findings contribute to the understanding of the chronological order of signals and expression patterns needed to achieve chondrogenesis, articular chondrogenesis, or osteogenesis, which is crucial for the development of treatments that can regrow bone and articular cartilage clinically.
Collapse
Affiliation(s)
- Fei Xiong
- Wuxi Hand Surgery Hospital, Wuxi, China
| | - Yan Chevalier
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Germany
| | - Roland M Klar
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, School of Dentistry, Kansas City, MO, USA
| |
Collapse
|
8
|
Woo SH, Kim DY, Choi JH. Roles of Vascular Smooth Muscle Cells in Atherosclerotic Calcification. J Lipid Atheroscler 2023; 12:106-118. [PMID: 37265849 PMCID: PMC10232217 DOI: 10.12997/jla.2023.12.2.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/03/2023] Open
Abstract
The accumulation of calcium in atherosclerotic plaques is a prominent feature of advanced atherosclerosis, and it has a strong positive correlation with the total burden of atherosclerosis. Atherosclerotic calcification usually appears first at the necrotic core, indicating that cell death and inflammatory processes are involved in calcification. During atherosclerotic inflammation, various cell types, such as vascular smooth muscle cells, nascent resident pericytes, circulating stem cells, or adventitial cells, have been assumed to differentiate into osteoblastic cells, which lead to vascular calcification. Among these cell types, vascular smooth muscle cells are considered a major contributor to osteochondrogenic cells in the atherosclerotic milieu. In this review, we summarize the molecular mechanisms underlying the osteochondrogenic switch of vascular smooth muscle cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
9
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
10
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Liu K, Ge H, Liu C, Jiang Y, Yu Y, Zhou Z. Notch-RBPJ Pathway for the Differentiation of Bone Marrow Mesenchymal Stem Cells in Femoral Head Necrosis. Int J Mol Sci 2023; 24:ijms24076295. [PMID: 37047268 PMCID: PMC10094204 DOI: 10.3390/ijms24076295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Femoral head necrosis (FHN) is a common leg disease in broilers, resulting in economic losses in the poultry industry. The occurrence of FHN is closely related to the decrease in the number of bone marrow mesenchymal stem cells (BMSCs) and the change in differentiation direction. This study aimed to investigate the function of differentiation of BMSCs in the development of FHN. We isolated and cultured BMSCs from spontaneous FHN-affected broilers and normal broilers, assessed the ability of BMSCs into three lineages by multiple staining methods, and found that BMSCs isolated from FHN-affected broilers demonstrated enhanced lipogenic differentiation, activated Notch-RBPJ signaling pathway, and diminished osteogenic and chondrogenic differentiation. The treatment of BMSCs with methylprednisolone (MP) revealed a significant decrease in the expressions of Runx2, BMP2, Col2a1 and Aggrecan, while the expressions of p-Notch1/Notch1, Notch2 and RBPJ were increased significantly. Jagged-1 (JAG-1, Notch activator)/DAPT (γ-secretase inhibitor) could promote/inhibit the osteogenic or chondrogenic ability of MP-treated BMSCs, respectively, whereas the differentiation ability of BMSCs was restored after transfection with si-RBPJ. The above results suggest that the Notch-RBPJ pathway plays important role in FHN progression by modulating the osteogenic and chondrogenic differentiation of BMSCs.
Collapse
|
12
|
Liu H, Müller PE, Aszódi A, Klar RM. Osteochondrogenesis by TGF-β3, BMP-2 and noggin growth factor combinations in an ex vivo muscle tissue model: Temporal function changes affecting tissue morphogenesis. Front Bioeng Biotechnol 2023; 11:1140118. [PMID: 37008034 PMCID: PMC10060664 DOI: 10.3389/fbioe.2023.1140118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-β3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-β3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-β3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-β3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.
Collapse
Affiliation(s)
- Heng Liu
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
- *Correspondence: Heng Liu, ; Roland M. Klar,
| | - Peter E. Müller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszódi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Roland M. Klar
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Heng Liu, ; Roland M. Klar,
| |
Collapse
|
13
|
The Twofold Role of Osteogenic Small Molecules in Parkinson's Disease Therapeutics: Crosstalk of Osteogenesis and Neurogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3813541. [PMID: 36545269 PMCID: PMC9763015 DOI: 10.1155/2022/3813541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Deemed one of the most problematic neurodegenerative diseases in the elderly population, Parkinson's disease remains incurable to date. Ongoing diagnostic studies, however, have revealed that a large number of small molecule drugs that trigger the BMP2-Smad signaling pathway with an osteogenic nature may be effective in Parkinson's disease treatment. Although BMP2 and Smad1, 3, and 5 biomolecules promote neurite outgrowth and neuroprotection in dopaminergic cells as well, small molecules are quicker at crossing the BBB and reaching the damaged dopaminergic neurons located in the substantia nigra due to a molecular weight less than 500 Da. It is worth noting that osteogenic small molecules that inhibit Smurf1 phosphorylation do not offer therapeutic opportunities for Parkinson's disease; whereas, osteogenic small molecules that trigger Smad1, 3, and 5 phosphorylation may have strong therapeutic implications in Parkinson's disease by increasing the survival rate of dopaminergic cells and neuritogenesis. Notably, from a different perspective, it might be said that osteogenic small molecules can possibly put forth therapeutic options for Parkinson's disease by improving neuritogenesis and cell survival.
Collapse
|
14
|
Wang K, Zhou C, Li L, Dai C, Wang Z, Zhang W, Xu J, Zhu Y, Pan Z. Aucubin promotes bone-fracture healing via the dual effects of anti-oxidative damage and enhancing osteoblastogenesis of hBM-MSCs. Stem Cell Res Ther 2022; 13:424. [PMID: 35986345 PMCID: PMC9389815 DOI: 10.1186/s13287-022-03125-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Aucubin (AU), an iridoid glucoside isolated from many traditional herbal medicines, has anti-osteoporosis and anti-apoptosis bioactivities. However, the effect of AU on the treatment of bone-fracture remains unknown. In the present study, the aims were to investigate the roles and mechanisms of AU not only on osteoblastogenesis of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) and anti-oxidative stress injury in vitro, but also on bone-fracture regeneration by a rat tibial fracture model in vivo. Methods CCK-8 assay was used to assess the effect of AU on the viability and proliferation of hBM-MSCs. The expression of specific genes and proteins on osteogenesis, apoptosis and signaling pathways was measured by qRT-PCR, western blotting and immunofluorescence analysis. ALP staining and quantitative analysis were performed to evaluate ALP activity. ARS and quantitative analysis were performed to evaluate calcium deposition. DCFH-DA staining was used to assess the level of reactive oxygen species (ROS). A rat tibial fracture model was established to validate the therapeutic effect of AU in vivo. Micro-CT with quantitative analysis and histological evaluation were used to assess the therapeutic effect of AU locally injection at the fracture site. Results Our results revealed that AU did not affect the viability and proliferation of hBM-MSCs. Compared with control group, western blotting, PCR, ALP activity and calcium deposition proved that AU-treated groups promoted osteogenesis of hBM-MSCs. The ratio of phospho-Smad1/5/9 to total Smad also significantly increased after treatment of AU. AU-induced expression of BMP2 signaling target genes BMP2 and p-Smad1/5/9 as well as of osteogenic markers COL1A1 and RUNX2 was downregulated after treating with noggin and LDN193189. Furthermore, AU promoted the translocation of Nrf2 from cytoplasm to nucleus and the expression level of HO1 and NQO1 after oxidative damage. In a rat tibial fracture model, local injection of AU promoted bone regeneration. Conclusions Our study demonstrates the dual effects of AU in not only promoting bone-fracture healing by regulating osteogenesis of hBM-MSCs partly via canonical BMP2/Smads signaling pathway but also suppressing oxidative stress damage partly via Nrf2/HO1 signaling pathway.
Collapse
|
15
|
Kim P, Park J, Lee DJ, Mizuno S, Shinohara M, Hong CP, Jeong Y, Yun R, Park H, Park S, Yang KM, Lee MJ, Jang SP, Kim HY, Lee SJ, Song SU, Park KS, Tanaka M, Ohshima H, Cho JW, Sugiyama F, Takahashi S, Jung HS, Kim SJ. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun 2022; 13:3960. [PMID: 35803931 PMCID: PMC9270402 DOI: 10.1038/s41467-022-31697-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-β and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-β1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3β and subsequent Smurf1 recruitment, promoted β-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.
Collapse
Affiliation(s)
- Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Amoris Bio Inc, Seoul, 06668, Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | | | - Yealeen Jeong
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Rebecca Yun
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Hyeyeon Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | | | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | | | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- NGeneS Inc., Ansan-si, 15495, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sun U Song
- Research Institute, SCM Lifescience Inc., Incheon, Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Mikako Tanaka
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
- Division of Dental Laboratory Technology, Meirin College, Niigata, 950-2086, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jin Won Cho
- Department of Systems Biology and Glycosylation Network Research Center, Yonsei University, Seoul, Korea
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea.
- Medpacto Inc., Seoul, 06668, Korea.
- TheragenEtex Co., Gyeonggi-do, Korea.
| |
Collapse
|
16
|
Two Modulators of Skeletal Development: BMPs and Proteoglycans. J Dev Biol 2022; 10:jdb10020015. [PMID: 35466193 PMCID: PMC9036252 DOI: 10.3390/jdb10020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.
Collapse
|
17
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Premature Vertebral Mineralization in hmx1-Mutant Zebrafish. Cells 2022; 11:cells11071088. [PMID: 35406651 PMCID: PMC8997757 DOI: 10.3390/cells11071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development, and mutations in HMX1 are linked to an ocular defect termed oculoauricular syndrome of Schorderet–Munier–Franceschetti (OAS) (MIM #612109). Recently, additional altered orofacial features have been reported, including short mandibular rami, asymmetry of the jaws, and altered premaxilla. We found that in two mutant zebrafish lines termed hmx1mut10 and hmx1mut150, precocious mineralization of the proximal vertebrae occurred. Zebrafish hmx1mut10 and hmx1mut150 report mutations in the SD1 and HD domains, which are essential for dimerization and activity of hmx1. In hmx1mut10, the bone morphogenetic protein (BMP) antagonists chordin and noggin1 were downregulated, while bmp2b and bmp4 were highly expressed and specifically localized to the dorsal region prior to the initiation of the osteogenic process. The osteogenic promoters runx2b and spp1 were also upregulated. Supplementation with DMH1—an inhibitor of the BMP signaling pathway—at the specific stage in which bmp2b and bmp4 are highly expressed resulted in reduced vertebral mineralization, resembling the wildtype mineralization progress of the axial skeleton. These results point to a possible role of hmx1 as part of a complex gene network that inhibits bmp2b and bmp4 in the dorsal region, thus regulating early axial skeleton development.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Jules-Gonin Eye Hospital, Unit of Gene Therapy and Stem Cell Biology, 1004 Lausanne, Switzerland
- Correspondence:
| | - Gaëtan Pinton
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Nathalie Allaman-Pillet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Daniel F. Schorderet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
18
|
Li T, Hou X, Huang Y, Wang C, Chen H, Yan C. In vitro and in silico anti-osteoporosis activities and underlying mechanisms of a fructan, ABW90-1, from Achyranthes bidentate. Carbohydr Polym 2022; 276:118730. [PMID: 34823766 DOI: 10.1016/j.carbpol.2021.118730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Achyranthes bidentata is a traditional Chinese medicine used to treat osteoporosis. AB90, a crude saccharide from A. bidentata, showed excellent osteoprotective effects in ovariectomized rats, and ABW90-1, an oligosaccharide purified from AB90, stimulated significant differentiation of osteoblasts. However, the osteogenic effects and underlying mechanisms of ABW90-1 have remained unknown. In the present study, we found that ABW90-1 significantly promoted ALP activity, mineralization, and the expression of osteogenic markers in MC3T3-E1 cells. ABW90-1 showed strong binding with the WNT signaling complex and BMP2 based on number of interactions, hydrogen bond length, and binding energy in silico. ABW90-1 significantly increased the expression of active-β-catenin, p-GSK-3β, LEF-1, BMP2, and p-SMAD1. Importantly, the osteogenic effects of ABW90-1 were partially suppressed by DKK-1 and Noggin, which are specific inhibitors of the WNT and BMP signaling pathways, respectively. Collectively, these findings suggest that ABW90-1 has osteogenic effects through crosstalk between WNT/β-catenin and BMP2/SMAD1 signaling pathways.
Collapse
Affiliation(s)
- Tianyu Li
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xin Hou
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihua Huang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changsheng Wang
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Clinical Pharmacy of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Xie F, Cui QK, Wang ZY, Liu B, Qiao W, Li N, Cheng J, Hou YM, Dong XY, Wang Y, Zhang MX. ILF3 is responsible for hyperlipidemia-induced arteriosclerotic calcification by mediating BMP2 and STAT1 transcription. J Mol Cell Cardiol 2021; 161:39-52. [PMID: 34343541 DOI: 10.1016/j.yjmcc.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Calcification is common in atherosclerotic plaque and can induce vulnerability, which further leads to myocardial infarction, plaque rupture and stroke. The mechanisms of atherosclerotic calcification are poorly characterized. Interleukin enhancer binding factor 3 (ILF3) has been identified as a novel factor affecting dyslipidemia and stroke subtypes. However, the precise role of ILF3 in atherosclerotic calcification remains unclear. In this study, we used smooth muscle-conditional ILF3 knockout (ILF3SM-KO) and transgenic mice (ILF3SM-Tg) and macrophage-conditional ILF3 knockout (ILF3M-KO) and transgenic (ILF3M-Tg) mice respectively. Here we showed that ILF3 expression is increased in calcified human aortic vascular smooth muscle cells (HAVSMCs) and calcified atherosclerotic plaque in humans and mice. We then found that hyperlipidemia increases ILF3 expression and exacerbates calcification of VSMCs and macrophages by regulating bone morphogenetic protein 2 (BMP2) and signal transducer and activator of transcription 1 (STAT1) transcription. We further explored the molecular mechanisms of ILF3 in atherosclerotic calcification and revealed that ILF3 acts on the promoter regions of BMP2 and STAT1 and mediates BMP2 upregulation and STAT1 downregulation, which promotes atherosclerotic calcification. Our results demonstrate the effect of ILF3 in atherosclerotic calcification. Inhibition of ILF3 may be a useful therapy for preventing and even reversing atherosclerotic calcification.
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Ke Cui
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Ying Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
20
|
Spatial-Temporal Patterns and Inflammatory Factors of Bone Matrix Remodeling. Stem Cells Int 2021; 2021:4307961. [PMID: 34777503 PMCID: PMC8580647 DOI: 10.1155/2021/4307961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.
Collapse
|
21
|
Menon S, Huber J, Duldulao C, Longaker MT, Quarto N. An Evolutionary Conserved Signaling Network Between Mouse and Human Underlies the Differential Osteoskeletal Potential of Frontal and Parietal Calvarial Bones. Front Physiol 2021; 12:747091. [PMID: 34744787 PMCID: PMC8567095 DOI: 10.3389/fphys.2021.747091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
The mammalian calvarial vault is an ancient and highly conserved structure among species, however, the mechanisms governing osteogenesis of the calvarial vault and how they might be conserved across mammalian species remain unclear. The aim of this study was to determine if regional differences in osteogenic potential of the calvarial vault, first described in mice, extend to humans. We derived human frontal and parietal osteoblasts from fetal calvarial tissue, demonstrating enhanced osteogenic potential both in vitro and in vivo of human frontal derived osteoblasts compared to parietal derived osteoblasts. Furthermore, we found shared differential signaling patterns in the canonical WNT, TGF-β, BMP, and FGF pathways previously described in the mouse to govern these regional differences in osteogenic potential. Taken together, our findings unveil evolutionary conserved similarities both at functional and molecular level between the mouse and human calvarial bones, providing further support that studies employing mouse models, are suitable for translational studies to human.
Collapse
Affiliation(s)
- Siddharth Menon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Chris Duldulao
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
22
|
Wang B, Yang J, Fan L, Wang Y, Zhang C, Wang H. Osteogenic effects of antihypertensive drug benidipine on mouse MC3T3-E1 cells in vitro. J Zhejiang Univ Sci B 2021; 22:410-420. [PMID: 33973422 DOI: 10.1631/jzus.b2000628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension is a prevalent systemic disease in the elderly, who can suffer from several pathological skeletal conditions simultaneously, including osteoporosis. Benidipine (BD), which is widely used to treat hypertension, has been proved to have a beneficial effect on bone metabolism. In order to confirm the osteogenic effects of BD, we investigated its osteogenic function using mouse MC3T3-E1 preosteoblast cells in vitro. The proliferative ability of MC3T3-E1 cells was significantly associated with the concentration of BD, as measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and cell cycle assay. With BD treatment, the osteogenic differentiation and maturation of MC3T3-E1 cells were increased, as established by the alkaline phosphatase (ALP) activity test, matrix mineralized nodules formation, osteogenic genetic test, and protein expression analyses. Moreover, our data showed that the BMP2/Smad pathway could be the partial mechanism for the promotion of osteogenesis by BD, while BD might suppress the possible function of osteoclasts through the OPG/RANKL/RANK (receptor activator of nuclear factor-κB (NF-κB)) pathway. The hypothesis that BD bears a considerable potential in further research on its dual therapeutic effect on hypertensive patients with poor skeletal conditions was proved within the limitations of the present study.
Collapse
Affiliation(s)
- Baixiang Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Jiakang Yang
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Lijie Fan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yu Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Chenqiu Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
23
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
24
|
Zhu D, Ansari AR, Xiao K, Wang W, Wang L, Qiu W, Zheng X, Song H, Liu H, Zhong J, Peng K. Boron Supplementation Promotes Osteogenesis of Tibia by Regulating the Bone Morphogenetic Protein-2 Expression in African Ostrich Chicks. Biol Trace Elem Res 2021; 199:1544-1555. [PMID: 32676937 DOI: 10.1007/s12011-020-02258-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
The present study aimed to explore the effects of supplemental boron on osteogenesis of tibia and to investigate the possible relationship between additional boron and the expression of bone morphogenetic protein-2 (BMP-2) in tibia of ostrich chicks. Therefore, forty-eight African ostrich chicks (15 days old) were supplemented with 0 mg/L, 40 mg/L, 80 mg/L, 160 mg/L, 320 mg/L, and 640 mg/L of boron in drinking water for 75 days. The paraffin sections of tibia used to measure histomorphometric parameters by hematoxylin and eosin (HE) staining, Masson's staining, and immunohistochemistry (IHC). Enzyme-linked immunosorbent assay was performed to assess the level of BMP-2, osteocalcin (BGP), glucocorticoids (GCs), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) in serum. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) technique was performed to detect the cell apoptosis. The results indicated that low dose of supplemental boron (40 mg/L-160 mg/L) in drinking water promotes bone development by increasing the mature ossein. The expression of BMP2 on 45 days was higher than 90 days. Serum level of BMP-2, BGP, and GCs changed significantly in groups with low dosage of boron, and OPG/RANKL ratio was upregulated from 0 to 160 mg/L. Cell apoptosis was least in 40 mg/L and 160 mg/L groups. Taken together, low dose of boron supplemented in drinking water could promote osteogenesis and growth and development of tibia by regulating the expression and secretion of BMP-2 and providing a dynamically balanced environment for tibia growth, development, and reconstruction by regulating the concentrations of BGP, GCs, and OPG/RANKL ratio in serum.
Collapse
Affiliation(s)
- Daiyun Zhu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Ke Xiao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Weiwei Qiu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinting Zheng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huazhen Liu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Juming Zhong
- College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Kemei Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
25
|
Garcia J, Delany AM. MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone 2021; 143:115791. [PMID: 33285257 PMCID: PMC7787082 DOI: 10.1016/j.bone.2020.115791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
This review showcases miRNAs contributing to the regulation of bone forming osteoblasts through their effects on the TGFβ and BMP pathways, with a focus on ligands, receptors and SMAD-mediated signaling. The goal of this work is to provide a basis for broadly understanding the contribution of miRNAs to the modulation of TGFβ and BMP signaling in the osteoblast lineage, which may provide a rationale for potential therapeutic strategies. Therefore, the search strategy for this review was restricted to validated miRNA-target interactions within the canonical TGFβ and BMP signaling pathways; miRNA-target interactions based only bioinformatics are not presented. Specifically, this review discusses miRNAs targeting each of the TGFβ isoforms, as well as BMP2 and BMP7. Further, miRNAs targeting the signaling receptors TGFβR1 and TGFβR2, and those targeting the type 1 BMP receptors and BMPR2 are described. Lastly, miRNAs targeting the receptor SMADs, the common SMAD4 and the inhibitory SMAD7 are considered. Of these miRNAs, the miR-140 family plays a prominent role in inhibiting TGFβ signaling, targeting both ligand and receptor. Similarly, the miR-106 isoforms target both BMP2 and SMAD5 to inhibit osteoblastic differentiation. Many of the miRNAs targeting TGFβ and BMP signaling components are induced during fracture, mechanical unloading or estrogen deprivation. Localized delivery of miRNA-based therapeutics that modulate the BMP signaling pathway could promote bone formation.
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, CT, 06030, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
26
|
Jiang N, Liu HX, Liang HY, Feng XH, Liu BY, Zhou YY. Osteogenic differentiation characteristics of hip joint capsule fibroblasts obtained from patients with ankylosing spondylitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:331. [PMID: 33708958 PMCID: PMC7944275 DOI: 10.21037/atm-20-7817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Autoimmune disease are fairly common and one that has an excessive degree of disability is Ankylosing spondylitis (AS). As the main cells in connective tissues, fibroblasts may play important roles in AS ossification. The conducted research aims to establish the osteogenic disparity characteristics of fibroblasts cultured in vitro, obtained via AS patients hip joint capsule, as well as investigating the pathological osteogenic molecular workings of AS. Methods AS patients hip joint capsules were acquired and fracture patients as the control with the finite fibroblast line were established by using tissue culture method. AS fibroblast proliferation, cycle and apoptosis, expression of osteogenic marker genes, osteogenic phenotypes, and the activation degree of the bone morphogenetic protein (BMP)/Smads signalling pathway were detected by flow cytometry, western blotting and real-time fluorescent quantitative polymerase chain reaction. Results Proliferative activity in AS fibroblasts were abnormally high, and the apoptotic rate decreased. Compared with normal fibroblasts, the mRNA expression of osteogenic marker genes, expression of osteogenic phenotypes, protein expression of core-binding factor a1 (Cbfa1), Smad1, Smad4, Smad5, phosphorylated (p) Smad1, and pSmad5 in AS fibroblasts were higher; however, the expression of Smad6 was lower. Moreover, recombinant human bone morphogenetic protein-2(rhBMP-2) stimulated Cbfa1 expression by normal and AS fibroblasts through the BMP/Smads signalling pathway. Conclusions The fibroblasts of hip joint capsules in patients with AS cultured in vitro have biologic characteristics of osteogenic differentiation and may be important target cells of AS ossification. The Activated BMP/Smads signalling pathway could potentially be a mechanism relating to fibroblasts differentiating into osteoblasts and an ossification mechanism for AS.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Nephrology and Rheumatology, Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Hong-Xiao Liu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Ying Liang
- Department of Traditional Chinese Medicine, Zhongshan City People's Hospital, Zhongshan, China
| | - Xing-Hua Feng
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ben-Yong Liu
- Department of TCM internal medicine, Beijing Massage Hospital, Beijing, China
| | - Ying-Yan Zhou
- Department of Rheumatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Strong AL, Spreadborough PJ, Dey D, Yang P, Li S, Lee A, Haskins RM, Grimm PD, Kumar R, Bradley MJ, Yu PB, Levi B, Davis TA. BMP Ligand Trap ALK3-Fc Attenuates Osteogenesis and Heterotopic Ossification in Blast-Related Lower Extremity Trauma. Stem Cells Dev 2021; 30:91-105. [PMID: 33256557 PMCID: PMC7826435 DOI: 10.1089/scd.2020.0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Traumatic heterotopic ossification (tHO) commonly develops in wounded service members who sustain high-energy and blast-related traumatic amputations. Currently, no safe and effective preventive measures have been identified for this patient population. Bone morphogenetic protein (BMP) signaling blockade has previously been shown to reduce ectopic bone formation in genetic models of HO. In this study, we demonstrate the efficacy of small-molecule inhibition with LDN193189 (ALK2/ALK3 inhibition), LDN212854 (ALK2-biased inhibition), and BMP ligand trap ALK3-Fc at inhibiting early and late osteogenic differentiation of tissue-resident mesenchymal progenitor cells (MPCs) harvested from mice subjected to burn/tenotomy, a well-characterized trauma-induced model of HO. Using an established rat tHO model of blast-related extremity trauma and methicillin-resistant Staphylococcus aureus infection, a significant decrease in ectopic bone volume was observed by micro-computed tomography imaging following treatment with LDN193189, LDN212854, and ALK3-Fc. The efficacy of LDN193189 and LDN212854 in this model was associated with weight loss (17%-19%) within the first two postoperative weeks, and in the case of LDN193189, delayed wound healing and metastatic infection was observed, while ALK3-Fc was well tolerated. At day 14 following injury, RNA-Seq and quantitative reverse transcriptase-polymerase chain reaction analysis revealed that ALK3-Fc enhanced the expression of skeletal muscle structural genes and myogenic transcriptional factors while inhibiting the expression of inflammatory genes. Tissue-resident MPCs harvested from rats treated with ALK3-Fc exhibited reduced osteogenic differentiation, proliferation, and self-renewal capacity and diminished expression of genes associated with endochondral ossification and SMAD-dependent signaling pathways. Together, these results confirm the contribution of BMP signaling in osteogenic differentiation and ectopic bone formation and that a selective ligand-trap approach such as ALK3-Fc may be an effective and tolerable prophylactic strategy for tHO.
Collapse
Affiliation(s)
- Amy L. Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | - Philip J. Spreadborough
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuli Li
- Division of Plastic Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | - Arthur Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ryan M. Haskins
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Patrick D. Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ravi Kumar
- Acceleron Pharma, Inc., Cambridge, Massachusetts, USA
| | - Matthew J. Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Paul B. Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas A. Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Role of the fibroblast growth factor 19 in the skeletal system. Life Sci 2020; 265:118804. [PMID: 33245964 DOI: 10.1016/j.lfs.2020.118804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor family (FGFs) is a kind of cytokine that plays an important role in growth, development, metabolism and disease. During bone development, multiple FGFs and fibroblast growth factor receptors (FGFRs) play important roles. Previous reports have elucidated the great importance of FGF1, 2, 4, 6, 7, 8, 9, 10, and 18 in bone development, and FGF21 and 23 in bone homeostasis and bone regulation. FGF19 was initially found in the human foetal brain, and its gene location is related to osteoporosis pseudoglioma syndrome. Presently, gene chip detection has repeatedly found that FGF19 shows spatiotemporal specificity of gene expression in bone development and bone-related diseases, as well as differences in the protein level, indicating that FGF19 affects the skeletal system. Considering the current insufficient understanding of FGF19 and its potential function in the skeletal system, this review aims to introduce the background of FGF19 in bone, summarise the research progress of FGF19 in the skeletal system, and discuss the role and therapeutic potential of FGF19 in bone development and bone-related diseases.
Collapse
|
29
|
Kobayashi M, Chijimatsu R, Hart DA, Hamamoto S, Jacob G, Yano F, Saito T, Shimomura K, Ando W, Chung UI, Tanaka S, Yoshikawa H, Nakamura N. Evidence that TD-198946 enhances the chondrogenic potential of human synovium-derived stem cells through the NOTCH3 signaling pathway. J Tissue Eng Regen Med 2020; 15:103-115. [PMID: 33169924 DOI: 10.1002/term.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022]
Abstract
Human synovium-derived stem cells (hSSCs) are an attractive source of cells for cartilage repair. At present, the quality of tissue and techniques used for cartilage regeneration have scope for improvement. A small compound, TD-198946, was reported to enhance chondrogenic induction from hSSCs; however, other applications of TD-198946, such as priming the cell potential of hSSCs, remain unknown. Our study aimed to examine the effect of TD-198946 pretreatment on hSSCs. HSSCs were cultured with or without TD-198946 for 7 days during expansion culture and then converted into a three-dimensional pellet culture supplemented with bone morphogenetic protein-2 (BMP2) and/or transforming growth factor beta-3 (TGFβ3). Chondrogenesis in cultures was assessed based on the GAG content, histology, and expression levels of chondrogenic marker genes. Cell pellets derived from TD-198946-pretreated hSSCs showed enhanced chondrogenic potential when chondrogenesis was induced by both BMP2 and TGFβ3. Moreover, cartilaginous tissue was efficiently generated from TD-198946-pretreated hSSCs using a combination of BMP2 and TGFβ3. Microarray analysis revealed that NOTCH pathway-related genes and their target genes were significantly upregulated in TD-198946-treated hSSCs, although TD-198946 alone did not upregulate chondrogenesis related markers. The administration of the NOTCH signal inhibitor diminished the effect of TD-198946. Thus, TD-198946 enhances the chondrogenic potential of hSSCs via the NOTCH3 signaling pathway. This study is the first to demonstrate the gradual activation of NOTCH3 signaling during chondrogenesis in hSSCs. The priming of NOTCH3 using TD-198946 provides a novel insight regarding the regulation of the differentiation of hSSCs into chondrocytes.
Collapse
Affiliation(s)
- Masato Kobayashi
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Shuichi Hamamoto
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - George Jacob
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Shimomura
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Wataru Ando
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Yoshikawa
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
| |
Collapse
|
30
|
Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, Zafari P, Esmaeili SA. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72:2366-2381. [PMID: 33006813 DOI: 10.1002/iub.2387] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune inflammatory disease with no absolute cure. Although the exact etiopathogenesis of SLE is still enigmatic, it has been well demonstrated that a combination of genetic predisposition and environmental factors trigger a disturbance in immune responses and thereby participate in the development of this condition. Almost all available therapeutic strategies in SLE are primarily based on the administration of immunosuppressive drugs and are not curative. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic adult stem cells that can be isolated from many adult tissues and are increasingly recognized as immune response modulating agents. MSC-mediated inhibition of immune responses is a complex mechanism that involves almost every aspect of the immune response. MSCs suppress the maturation of antigen-presenting cells (DC and MQ), proliferation of T cells (Th1, T17, and Th2), proliferation and immunoglobulin production of B cells, the cytotoxic activity of CTL and NK cells in addition to increasing regulatory cytokines (TGF-β and IL10), and decreasing inflammatory cytokines (IL17, INF-ϒ, TNF-α, and IL12) levels. MSCs have shown encouraging results in the treatment of several autoimmune diseases, in particular SLE. This report aims to review the beneficial and therapeutic properties of MSCs; it also focuses on the results of animal model studies, preclinical studies, and clinical trials of MSC therapy in SLE from the immunoregulatory aspect.
Collapse
Affiliation(s)
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Molecular Genetics, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadia Kia
- Skin Cancer Prevention Research Center, Torvergata University of Medical Sciences, Rome, Italy
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Bez M, Pelled G, Gazit D. BMP gene delivery for skeletal tissue regeneration. Bone 2020; 137:115449. [PMID: 32447073 PMCID: PMC7354211 DOI: 10.1016/j.bone.2020.115449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Musculoskeletal disorders are common and can be associated with significant morbidity and reduced quality of life. Current treatments for major bone loss or cartilage defects are insufficient. Bone morphogenetic proteins (BMPs) are key players in the recruitment and regeneration of damaged musculoskeletal tissues, and attempts have been made to introduce the protein to fracture sites with limited success. In the last 20 years we have seen a substantial progress in the development of various BMP gene delivery platforms for several conditions. In this review we cover the progress made using several techniques for BMP gene delivery for bone as well as cartilage regeneration, with focus on recent advances in the field of skeletal tissue engineering. Some methods have shown success in large animal models, and with the global trend of introducing gene therapies into the clinical setting, it seems that the day in which BMP gene therapy will be viable for clinical use is near.
Collapse
Affiliation(s)
- Maxim Bez
- Medical Corps, Israel Defense Forces, Israel; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
32
|
Temporal TGF-β Supergene Family Signalling Cues Modulating Tissue Morphogenesis: Chondrogenesis within a Muscle Tissue Model? Int J Mol Sci 2020; 21:ijms21144863. [PMID: 32660137 PMCID: PMC7402331 DOI: 10.3390/ijms21144863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Temporal translational signalling cues modulate all forms of tissue morphogenesis. However, if the rules to obtain specific tissues rely upon specific ligands to be active or inactive, does this mean we can engineer any tissue from another? The present study focused on the temporal effect of “multiple” morphogen interactions on muscle tissue to figure out if chondrogenesis could be induced, opening up the way for new tissue models or therapies. Gene expression and histomorphometrical analysis of muscle tissue exposed to rat bone morphogenic protein 2 (rBMP-2), rat transforming growth factor beta 3 (rTGF-β3), and/or rBMP-7, including different combinations applied briefly for 48 h or continuously for 30 days, revealed that a continuous rBMP-2 stimulation seems to be critical to initiate a chondrogenesis response that was limited to the first seven days of culture, but only in the absence of rBMP-7 and/or rTGF-β3. After day 7, unknown modulatory effects retard rBMP-2s’ effect where only through the paired-up addition of rBMP-7 and/or rTGF-β3 a chondrogenesis-like reaction seemed to be maintained. This new tissue model, whilst still very crude in its design, is a world-first attempt to better understand how multiple morphogens affect tissue morphogenesis with time, with our goal being to one day predict the chronological order of what signals have to be applied, when, for how long, and with which other signals to induce and maintain a desired tissue morphogenesis.
Collapse
|
33
|
Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, Chen L. The biological function of BMAL1 in skeleton development and disorders. Life Sci 2020; 253:117636. [DOI: 10.1016/j.lfs.2020.117636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
|
34
|
Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World J Stem Cells 2020; 12:339-350. [PMID: 32547682 PMCID: PMC7280866 DOI: 10.4252/wjsc.v12.i5.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.
Collapse
Affiliation(s)
- Guo-Ping Xu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xiang-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| | - Er-Man Chen
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
35
|
Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020; 46:326-340. [PMID: 31854489 DOI: 10.1002/biof.1598] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Bone is one of the most frequently transplanted tissues. The bone structure and its physiological function and stem cells biology were known to be closely related to each other for many years. Bone is considered a home to the well-known systems of postnatal mesenchymal stem cells (MSCs). These bone resident MSCs provide a range of growth factors (GF) and cytokines to support cell growth following injury. These GFs include a group of proteins and peptides produced by different cells which are regulators of important cell functions such as division, migration, and differentiation. GF signaling controls the formation and development of the MSCs condensation and plays a critical role in regulating osteogenesis, chondrogenesis, and bone/mineral homeostasis. Thus, a combination of both MSCs and GFs receives high expectations in regenerative medicine, particularly in bone repair applications. It is known that the delivery of exogenous GFs to the non-union bone fracture site remarkably improves healing results. Here we present updated information on bone tissue engineering with a specific focus on GF characteristics and their application in cellular functions and tissue healing. Moreover, the interrelation of GFs with the damaged bone microenvironment and their mechanistic functions are discussed.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- Food and Drug Administration, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
36
|
Tóth F, Gáll JM, Tőzsér J, Hegedűs C. Effect of inducible bone morphogenetic protein 2 expression on the osteogenic differentiation of dental pulp stem cells in vitro. Bone 2020; 132:115214. [PMID: 31884130 DOI: 10.1016/j.bone.2019.115214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is a member of the transforming growth factor-β superfamily, it is known to be a factor involved in skeletal development and capable of inducing in vitro osteogenic differentiation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs) isolated from extracted third molar teeth are an ideal resource for bone tissue engineering and regeneration applications, due to their convenient isolation, safe cryopreservation, and easy maintenance in cell cultures. The aims of this study were to deliver BMP-2 under control of the tetracycline-inducible (tet-on) promoter into dental pulp stem cells and to examine whether these BMP-2 expressing cell lines are capable of promoting osteogenic differentiation in vitro. BMP-2 gene was cloned into the lentiviral transfer plasmid pTet-IRES-EGFP and used to establish the DPSC-BMP-2 cell line. DPSC, DPSC-GFP (mock) and DPSC-BMP-2 cell lines were cultured in growth medium or osteogenic medium in the presence or absence of 100 ng/ml doxycycline. To assess differentiation, alkaline phosphatase activity, calcium accumulation and gene transcription levels of different genes involved in osteogenic differentiation (BMP-2, Runx2, alkaline phosphatase, and noggin) were measured. Doxycycline-induced BMP-2 expression induced the differentiation of DPSCs into the preosteoblastic stage but could not favor the further maturation into osteoblasts and osteocytes. We found that while Runx2 gene transcription was continuously upregulated in doxycycline-treated DPSC-BMP-2 cells, the alkaline phosphatase activity and the accumulation of minerals were reduced. As a result of the increased BMP-2 expression, the transcription level of the BMP antagonist noggin was also upregulated, and probably caused the observed effects regarding alkaline phosphatase (ALP) activity and mineral deposition. Our study shows that this system is effective in controlling transgene expression in DPSC cell line. Exploration of all known factors affecting osteogenic differentiation and their interactions is of major importance for the field of regenerative medicine. As the metabolic reaction to the upregulated transgene transcription appears to be cell line-specific, a wrongly selected target gene and/or regulation system could have adverse effects on differentiation.
Collapse
Affiliation(s)
- Ferenc Tóth
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| | - József M Gáll
- Department of Applied Mathematics and Probability Theory, Faculty of Informatics, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
37
|
Hao M, He J, Wang C, Wang C, Ma B, Zhang S, Duan J, Liu F, Zhang Y, Han L, Liu H, Sang Y. Effect of Hydroxyapatite Nanorods on the Fate of Human Adipose-Derived Stem Cells Assessed In Situ at the Single Cell Level with a High-Throughput, Real-Time Microfluidic Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905001. [PMID: 31697037 DOI: 10.1002/smll.201905001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The fate of stem cells at the single cell level with limited communication with other cells is still unknown due to the lack of an efficient tool for highly accurate molecular detection. Moreover, the conditional sensitivity of biological experiments requires a sufficient number of parallel experiments to support a conclusion. In this work, a microfluidic single cell chip is designed for use with a protein chip to investigate the effect of hydroxyapatite (HAp) on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in situ at the single cell level. By successfully detecting secretory proteins in situ, it is found that the HAp nanorods enhance osteogenic differentiation at the single cell level. In the chip, the single cell seeding approach confirms the osteogenic differentiation of the hADSCs, which endocytoses HAp, by reducing the influence of the factors secreted by neighboring differentiating cells. Most importantly, more than 7000 microchambers provide a sufficient number of parallel experiments for statistical analysis, which ensure a high level of repeatability of the HAp nanorod-induced osteogenic differentiation. The microfluidic chip comprising single cell culture microchambers with in situ detection capability is a promising tool for research on cell behavior or cell fate at the single cell level.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
38
|
Ruiz-Gaspà S, Guañabens N, Jurado S, Dubreuil M, Combalia A, Peris P, Monegal A, Parés A. Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene 2019; 725:144167. [PMID: 31639434 DOI: 10.1016/j.gene.2019.144167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis in advanced cholestatic and end-stage liver disease is related to low bone formation. Previous studies have demonstrated the deleterious consequences of lithocholic acid (LCA) and bilirubin on osteoblastic cells. These effects are partially or completely neutralized by ursodeoxycholic acid (UDCA). We have assessed the differential gene expression of osteoblastic cells under different culture conditions. The experiments were performed in human osteosarcoma cells (Saos-2) cultured with LCA (10 μM), bilirubin (50 μM) or UDCA (10 and 100 μM) at 2 and 24 h. Expression of 87 genes related to bone metabolism and other signalling pathways were assessed by TaqMan micro fluidic cards. Several genes were up-regulated by LCA, most of them pro-apoptotic (BAX, BCL10, BCL2L13, BCL2L14), but also MGP (matrix Gla protein), BGLAP (osteocalcin), SPP1 (osteopontin) and CYP24A1, and down-regulated bone morphogenic protein genes (BMP3 and BMP4) and DKK1 (Dickkopf-related protein 1). Parallel effects were observed with bilirubin, which up-regulated apoptotic genes and CSF2 (colony-stimulating factor 2) and down-regulated antiapoptotic genes (BCL2 and BCL2L1), BMP3, BMP4 and RUNX2. UDCA 100 μM had specific consequences since differential expression was observed, up-regulating BMP2, BMP4, BMP7, CALCR (calcitonin receptor), SPOCK3 (osteonectin), BGLAP (osteocalcin) and SPP1 (osteopontin), and down-regulating pro-apoptotic genes. Furthermore, most of the differential expression changes induced by both LCA and bilirubin were partially or completely neutralized by UDCA. Conclusion: Our observations reveal novel target genes, whose regulation by retained substances of cholestasis may provide additional insights into the pathogenesis of osteoporosis in cholestatic and end-stage liver diseases.
Collapse
Affiliation(s)
- Silvia Ruiz-Gaspà
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Nuria Guañabens
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain.
| | - Susana Jurado
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Marta Dubreuil
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Andres Combalia
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Pilar Peris
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Guo L, Wang R, Zhang K, Yuan J, Wang J, Wang X, Ma J, Wu C. A PINCH-1-Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. J Cell Biol 2019; 218:3773-3794. [PMID: 31578224 PMCID: PMC6829670 DOI: 10.1083/jcb.201902022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/30/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical cues from extracellular matrix exert strong effects on stem cell differentiation. This study finds that a signaling axis consisting of PINCH-1, Smurf1, and BMPR2 senses mechanical signals from extracellular matrix and regulates BMP signaling and mesenchymal stem cell differentiation. Mechano-environment plays multiple critical roles in the control of mesenchymal stem cell (MSC) fate decision, but the underlying signaling mechanisms remain undefined. We report here a signaling axis consisting of PINCH-1, SMAD specific E3 ubiquitin protein ligase 1 (Smurf1), and bone morphogenetic protein type 2 receptor (BMPR2) that links mechano-environment to MSC fate decision. PINCH-1 interacts with Smurf1, which inhibits the latter from interacting with BMPR2 and consequently suppresses BMPR2 degradation, resulting in augmented BMP signaling and MSC osteogenic differentiation (OD). Extracellular matrix (ECM) stiffening increases PINCH-1 level and consequently activates this signaling axis. Depletion of PINCH-1 blocks stiff ECM-induced BMP signaling and OD, whereas overexpression of PINCH-1 overrides signals from soft ECM and promotes OD. Finally, perturbation of either Smurf1 or BMPR2 expression is sufficient to block the effects of PINCH-1 on BMP signaling and MSC fate decision. Our findings delineate a key signaling mechanism through which mechano-environment controls BMPR2 level and MSC fate decision.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxia Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
40
|
Induction of Articular Chondrogenesis by Chitosan/Hyaluronic-Acid-Based Biomimetic Matrices Using Human Adipose-Derived Stem Cells. Int J Mol Sci 2019; 20:ijms20184487. [PMID: 31514329 PMCID: PMC6770472 DOI: 10.3390/ijms20184487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Cartilage repair using tissue engineering is the most advanced clinical application in regenerative medicine, yet available solutions remain unsuccessful in reconstructing native cartilage in its proprietary form and function. Previous investigations have suggested that the combination of specific bioactive elements combined with a natural polymer could generate carrier matrices that enhance activities of seeded stem cells and possibly induce the desired matrix formation. The present study sought to clarify this by assessing whether a chitosan-hyaluronic-acid-based biomimetic matrix in conjunction with adipose-derived stem cells could support articular hyaline cartilage formation in relation to a standard chitosan-based construct. By assessing cellular development, matrix formation, and key gene/protein expressions during in vitro cultivation utilizing quantitative gene and immunofluorescent assays, results showed that chitosan with hyaluronic acid provides a suitable environment that supports stem cell differentiation towards cartilage matrix producing chondrocytes. However, on the molecular gene expression level, it has become apparent that, without combinations of morphogens, in the chondrogenic medium, hyaluronic acid with chitosan has a very limited capacity to stimulate and maintain stem cells in an articular chondrogenic state, suggesting that cocktails of various growth factors are one of the key features to regenerate articular cartilage, clinically.
Collapse
|
41
|
Abstract
The influence of polymer blend coatings on the differentiation of mouse mesenchymal stem cells was investigated. Polymer blending is a common means of producing new coating materials with variable properties. Stem cell differentiation is known to be influenced by both chemical and mechanical properties of the underlying scaffold. We therefore selected to probe the response of stem cells cultured separately on two very different polymers, and then cultured on a 1:1 blend. The response to mechanical properties was probed by culturing the cells on polybutadiene (PB) films, where the film moduli was varied by adjusting film thickness. Cells adjusted their internal structure such that their moduli scaled with the PB films. These cells expressed chondrocyte markers (osterix (OSX), alkaline phosphatase (ALP), collagen X (COL-X), and aggrecan (ACAN)) without mineralizing. In contrast, cells on partially sulfonated polystyrene (PSS28) deposited large amounts of hydroxyapatite and expressed differentiation markers consistent with chondrocyte hypertrophy (OSX, ALP, COL-X, but not ACAN). Cells on phase-segregated PB and PSS28 films differentiated identically to those on PSS28, underscoring the challenges of using polymer templates for cell patterning in tissue engineering.
Collapse
|
42
|
Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X, Xing X, Xie C, Shi X, Du Y, Deng H, Li Z. Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core-Shell Nanofibers for Improving Bone Regeneration. ACS NANO 2019; 13:6372-6382. [PMID: 31184474 DOI: 10.1021/acsnano.8b06032] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The regeneration of bone tissue is regulated by both osteogenic and angiogenic growth factors which are expressed in a coordinated cascade of events. The aim of this study was to create a dual growth factor-release system that allows for time-controlled release to facilitate bone regeneration. We fabricated core-shell SF/PCL/PVA nanofibrous mats using coaxial electrospinning and layer-by-layer (LBL) techniques, where bone morphogenetic protein 2 (BMP2) was incorporated into the core of the nanofibers and connective tissue growth factor (CTGF) was attached onto the surface. Our study confirmed the sustained release of BMP2 and a rapid release of CTGF. Both in vitro and in vivo experiments demonstrated improvements in bone tissue recovery with the dual-drug release system. In vivo studies showed improvement in bone regeneration by 43% compared with single BMP2 release systems. Time-controlled release enabled by the core-shell nanofiber assembly provides a promising strategy to facilitate bone healing.
Collapse
Affiliation(s)
- Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Hu Tu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science , Wuhan University , Wuhan 430079 , China
| | - Shan Jiang
- Department of Materials Science and Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Qun Wang
- Department of Chemical and Biological Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Xue Zhou
- School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Xin Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Congyong Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Xiaowen Shi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science , Wuhan University , Wuhan 430079 , China
| | - Yuming Du
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science , Wuhan University , Wuhan 430079 , China
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science , Wuhan University , Wuhan 430079 , China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| |
Collapse
|
43
|
Damanik FFR, Spadolini G, Rotmans J, Farè S, Moroni L. Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomater Sci 2019; 7:1088-1100. [PMID: 30633255 DOI: 10.1039/c8bm00693h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electrospinning provides a simple robust method to manufacture scaffolds for tissue engineering applications. Though varieties of materials can be used, optimization and biocompatibility tests are required to provide functional tissue regeneration. Moreover, many studies are limited to 2D electrospun constructs rather than 3D templates due to the production of high density packed fibres, which result in poor cell infiltration. Here, we optimised electrospinning parameters for three different polymers: poly(ε-caprolactone) (PCL), polylactic acid (PLA) and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PA) copolymers. Human mesenchymal stromal cells (hMSCs) were cultured on scaffolds for 14 days to study the scaffolds' biocompatibility and their multi-lineage differentiation potential or maintenance of stemness in the absence of chemical stimuli. For all scaffolds, a high and stable metabolic activity was measured throughout the culture time with a high proliferation rate compared to day 1 (PCL 5.8-, PLA 4-, PA 4.9-fold). The metabolism of hMSCs was also measured through glucose and lactate concentrations, showing no cytotoxic levels up to 14 days. Total glycosaminoglycan (GAG) production was the highest in PA electrospun scaffolds. When normalized to DNA, GAG production was the highest in PLA and PA scaffolds. All scaffolds were prone to differentiate to an osteogenic lineage, with PCL providing the highest alkaline phosphatase and collagen type Ia gene upregulation. As PA had the most stable fibre formation, it was chosen as a template to further incorporate stromal cell-derived factor-1 (SDF-1) and granulocyte colony-stimulating factor (G-CSF), and stimulate higher hMSC infiltration. These scaffolds provided significantly higher hMSC infiltration than normal PA scaffolds. In conclusion, our optimized biocompatible electrospun scaffolds have shown promising regulation of hMSC fate. When combined with migratory stimulating cytokines, these scaffolds may overcome the known challenges of poor cellular infiltration typical of micro- and nano-fibrillary random meshes.
Collapse
Affiliation(s)
- Febriyani F R Damanik
- University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, the Netherlands
| | | | | | | | | |
Collapse
|
44
|
He W, Chen L, Huang Y, Xu Z, Xu W, Ding N, Chen J. Synergistic effects of recombinant Lentiviral-mediated BMP2 and TGF-beta3 on the osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro. Cytokine 2019; 120:1-8. [PMID: 30991228 DOI: 10.1016/j.cyto.2019.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are considered good candidates for seed cells in bone engineering. The study aim to investigate the synergistic effects of human bone morphogenetic protein 2 (hBMP2) and transforming growth factor beta3 (hTGF-beta3) modified BMSCs on inducing osteogenic differentiation in vitro. METHODS Lentivirus (LV) carrying hBMP2 and/or hTGF-beta3 genes were constructed and used to transduce rat BMSCs. The expression of osteogenic molecules was detected by qRT-PCR and western blotting. RESULTS Targeted genes were PCR-amplified and confirmed by DNA sequencing and BLAST analysis. BMSCs infected by vectors effectively resulted in the overexpressions of hBMP2 and hTGF-beta3 and higher levels of hBMP2 and hTGF-beta3 in the culture supernatant. The co-transduction of hBMP2 and hTGF-beta3 induced BMSCs osteogenic differentiation more effectively than the transduction of hBMP2 or hTGF-beta3 individually. The expression levels of osteopontin (OPN), osteocalcin (OCN), and osteoprotegerin (OPG) in LV-hBMP2 + LV-hTGF-beta3 group (BMSCs transfected by vectors respectively carrying hBMP-2 gene and hTGF-beta3 gene) and LV-hBMP2-hTGF-beta3 group (BMSCs transfected by vector carrying hBMP2 and hTGF-beta3 fusion gene) were significantly higher than in LV-BMP2 (BMSCs transfected by vector carrying hBMP2 gene) and LV-TGF-beta3 (BMSCs transfected by vector carrying hTGF-beta3 gene) groups (P < 0.05). The hBMP2 and/or hTGF-beta3 overexpression upregulated alkaline phosphatase (ALP) activity. CONCLUSION The present study showed that hBMP2 and/or hTGF-beta3 genes can be successfully overexpressed in BMSCs. Our study proved that the two cytokines (hBMP2 and hTGF-beta3) could induce bone differentiation synergistically, which foresees the use of the combination of these two cytokines as a therapeutic strategy in the future.
Collapse
Affiliation(s)
- Wubing He
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yongming Huang
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Zhixian Xu
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Wei Xu
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Nuoting Ding
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiantin Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
45
|
Li C, Ouyang L, Pence IJ, Moore AC, Lin Y, Winter CW, Armstrong JPK, Stevens MM. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900291. [PMID: 30844123 PMCID: PMC6606439 DOI: 10.1002/adma.201900291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/18/2019] [Indexed: 05/25/2023]
Abstract
The controlled fabrication of gradient materials is becoming increasingly important as the next generation of tissue engineering seeks to produce inhomogeneous constructs with physiological complexity. Current strategies for fabricating gradient materials can require highly specialized materials or equipment and cannot be generally applied to the wide range of systems used for tissue engineering. Here, the fundamental physical principle of buoyancy is exploited as a generalized approach for generating materials bearing well-defined compositional, mechanical, or biochemical gradients. Gradient formation is demonstrated across a range of different materials (e.g., polymers and hydrogels) and cargos (e.g., liposomes, nanoparticles, extracellular vesicles, macromolecules, and small molecules). As well as providing versatility, this buoyancy-driven gradient approach also offers speed (<1 min) and simplicity (a single injection) using standard laboratory apparatus. Moreover, this technique is readily applied to a major target in complex tissue engineering: the osteochondral interface. A bone morphogenetic protein 2 gradient, presented across a gelatin methacryloyl hydrogel laden with human mesenchymal stem cells, is used to locally stimulate osteogenesis and mineralization in order to produce integrated osteochondral tissue constructs. The versatility and accessibility of this fabrication platform should ensure widespread applicability and provide opportunities to generate other gradient materials or interfacial tissues.
Collapse
Affiliation(s)
- Chunching Li
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Liliang Ouyang
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Isaac J. Pence
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Axel C. Moore
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Charles W. Winter
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - James P. K. Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| |
Collapse
|
46
|
Guillem-Marti J, Gelabert M, Heras-Parets A, Pegueroles M, Ginebra MP, Manero JM. RGD Mutation of the Heparin Binding II Fragment of Fibronectin for Guiding Mesenchymal Stem Cell Behavior on Titanium Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3666-3678. [PMID: 30607934 DOI: 10.1021/acsami.8b17138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Maria-Pau Ginebra
- Institute for Bioengineering of Catalonia (IBEC) , Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona , Spain
| | | |
Collapse
|
47
|
Schryver E, Klein GL, Herndon DN, Suman OE, Branski LK, Sousse LE. Bone metabolism in pediatric burned patients: A review. Burns 2018; 44:1863-1869. [PMID: 30077487 PMCID: PMC9810107 DOI: 10.1016/j.burns.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
Abstract
Severe burns in children can lead to growth delays, bone loss, and wasting of lean body mass and muscle with subsequent long-term effects such as osteoporosis. The following review examines 11 randomized, placebo-controlled, prospective clinical trials in pediatric burns between 1995 and 2017. These studies included approximately 250 burned children, and they were conducted to evaluate the impact of severe burn on markers of bone formation and bone metabolism. Some trials also analyzed current therapy regimens such as pamidronate and vitamin D. The clinical utility of these outlined biomarkers is uncertain with regard to acute burn care, as the current literature remains unclear. This review thus serves to address the impact of severe burn on markers of bone formation and bone metabolism in pediatric patients but will not focus on the clinical utility of the markers. The aim of this review is to summarize the findings of the trials to guide the future care of burned patients to maximize bone recovery.
Collapse
Affiliation(s)
- Eric Schryver
- Shriners Hospital for Children―Galveston, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Gordon L. Klein
- Shriners Hospital for Children―Galveston, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - David N. Herndon
- Shriners Hospital for Children―Galveston, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Oscar E. Suman
- Shriners Hospital for Children―Galveston, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Ludwik K. Branski
- Shriners Hospital for Children―Galveston, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Linda E. Sousse
- Shriners Hospital for Children―Galveston, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
48
|
Asparuhova MB, Caballé-Serrano J, Buser D, Chappuis V. Bone-conditioned medium contributes to initiation and progression of osteogenesis by exhibiting synergistic TGF-β1/BMP-2 activity. Int J Oral Sci 2018; 10:20. [PMID: 29895828 PMCID: PMC5997631 DOI: 10.1038/s41368-018-0021-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/23/2018] [Indexed: 11/21/2022] Open
Abstract
Guided bone regeneration (GBR) often utilizes a combination of autologous bone grafts, deproteinized bovine bone mineral (DBBM), and collagen membranes. DBBM and collagen membranes pre-coated with bone-conditioned medium (BCM) extracted from locally harvested autologous bone chips have shown great regenerative potential in GBR. However, the underlying molecular mechanism remains largely unknown. Here, we investigated the composition of BCM and its activity on the osteogenic potential of mesenchymal stromal cells. We detected a fast and significant (P < 0.001) release of transforming growth factor-β1 (TGF-β1) from autologous bone within 10 min versus a delayed bone morphogenetic protein-2 (BMP-2) release from 40 min onwards. BCMs harvested within short time periods (10, 20, or 40 min), corresponding to the time of a typical surgical procedure, significantly increased the proliferative activity and collagen matrix production of BCM-treated cells. Long-term (1, 3, or 6 days)-extracted BCMs promoted the later stages of osteoblast differentiation and maturation. Short-term-extracted BCMs, in which TGF-β1 but no BMP-2 was detected, reduced the expression of the late differentiation marker osteocalcin. However, when both growth factors were present simultaneously in the BCM, no inhibitory effects on osteoblast differentiation were observed, suggesting a synergistic TGF-β1/BMP-2 activity. Consequently, in cells that were co-stimulated with recombinant TGF-β1 and BMP-2, we showed a significant stimulatory and dose-dependent effect of TGF-β1 on BMP-2-induced osteoblast differentiation due to prolonged BMP signaling and reduced expression of the BMP-2 antagonist noggin. Altogether, our data provide new insights into the molecular mechanisms underlying the favorable outcome from GBR procedures using BCM, derived from autologous bone grafts. ‘Bone-conditioned medium’ could improve oral bone regeneration therapy by promoting the proliferation and maturation of bone-forming cells. Building on recent research demonstrating the benefits of using cell culture medium prepared with bone chips (BCM) in such treatments, researchers led by Maria Asparuhova of the University of Bern, Switzerland, set out to elucidate the medium’s mechanisms. The team found that BCM incubated with bone chips for short periods—as little as ten minutes—contained heightened levels of signaling protein TGF-β1, which enhanced mouse bone marrow cell proliferation while downregulating maturation. BCM incubated for longer periods also generated increased levels of another protein, BMP-2, which boosted the maturation of bone-forming cells. This study reveals a sequential role of these two factors in oral bone development, and the potential physiological actions of BCM when used in regenerative therapies.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Jordi Caballé-Serrano
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Sun J, Ermann J, Niu N, Yan G, Yang Y, Shi Y, Zou W. Histone demethylase LSD1 regulates bone mass by controlling WNT7B and BMP2 signaling in osteoblasts. Bone Res 2018; 6:14. [PMID: 29707403 PMCID: PMC5916912 DOI: 10.1038/s41413-018-0015-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple regulatory mechanisms control osteoblast differentiation and function to ensure unperturbed skeletal formation and remodeling. In this study we identify histone lysine-specific demethylase 1(LSD1/KDM1A) as a key epigenetic regulator of osteoblast differentiation. Knockdown of LSD1 promoted osteoblast differentiation of human mesenchymal stem cells (hMSCs) in vitro and mice lacking LSD1 in mesenchymal cells displayed increased bone mass secondary to accelerated osteoblast differentiation. Mechanistic in vitro studies revealed that LSD1 epigenetically regulates the expression of WNT7B and BMP2. LSD1 deficiency resulted in increased BMP2 and WNT7B expression in osteoblasts and enhanced bone formation, while downregulation of WNT7B- and BMP2-related signaling using genetic mouse model or small-molecule inhibitors attenuated bone phenotype in vivo. Furthermore, the LSD1 inhibitor tranylcypromine (TCP) could increase bone mass in mice. These data identify LSD1 as a novel regulator of osteoblast activity and suggest LSD1 inhibition as a potential therapeutic target for treatment of osteoporosis.
Collapse
Affiliation(s)
- Jun Sun
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Joerg Ermann
- 2Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Ningning Niu
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Guang Yan
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yang Yang
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yujiang Shi
- 3Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Weiguo Zou
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This review aims to highlight the past and more current literature related to the multifaceted pathogenic programs that contribute to calcific aortic valve disease (CAVD) with a focus on the contribution of developmental programs. RECENT FINDINGS Calcification of the aortic valve is an active process characterized by calcific nodule formation on the aortic surface leading to a less supple and more stiffened cusp, thereby limiting movement and causing clinical stenosis. The mechanisms underlying these pathogenic changes are largely unknown, but emerging studies have suggested that signaling pathways common to valvulogenesis and bone development play significant roles and include Transforming Growth Factor-β (TGF-β), bone morphogenetic protein (BMP), Wnt, Notch, and Sox9. This comprehensive review of the literature highlights the complex nature of CAVD but concurrently identifies key regulators that can be targeted in the development of mechanistic-based therapies beyond surgical intervention to improve patient outcome.
Collapse
|