1
|
Peng H, Wu X, Cui X, Liu S, Liang Y, Cai X, Shi M, Zhong R, Li C, Liu J, Wu D, Gao Z, Lu X, Luo H, He J, Liang W. Molecular and immune characterization of Chinese early-stage non-squamous non-small cell lung cancer: a multi-omics cohort study. Transl Lung Cancer Res 2024; 13:763-784. [PMID: 38736486 PMCID: PMC11082711 DOI: 10.21037/tlcr-23-800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/15/2024] [Indexed: 05/14/2024]
Abstract
Background Albeit considered with superior survival, around 30% of the early-stage non-squamous non-small cell lung cancer (Ns-NSCLC) patients relapse within 5 years, suggesting unique biology. However, the biological characteristics of early-stage Ns-NSCLC, especially in the Chinese population, are still unclear. Methods Multi-omics interrogation of early-stage Ns-NSCLC (stage I-III), paired blood samples and normal lung tissues (n=76) by whole-exome sequencing (WES), RNA sequencing, and T-cell receptor (TCR) sequencing were conducted. Results An average of 128 exonic mutations were identified, and the most frequently mutant gene was EGFR (55%), followed by TP53 (37%) and TTN (26%). Mutations in MUC17, ABCA2, PDE4DIP, and MYO18B predicted significantly unfavorable disease-free survival (DFS). Moreover, cytobands amplifications in 8q24.3, 14q13.1, 14q11.2, and deletion in 3p21.1 were highlighted in recurrent cases. Higher incidence of human leukocyte antigen loss of heterozygosity (HLA-LOH), higher tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were identified in ever-smokers than never-smokers. HLA-LOH also correlated with higher TMB, TNB, intratumoral heterogeneity (ITH), and whole chromosomal instability (wCIN) scores. Interestingly, higher ITH was an independent predictor of better DFS in early-stage Ns-NSCLC. Up-regulation of immune-related genes, including CRABP2, ULBP2, IL31RA, and IL1A, independently portended a dismal prognosis. Enhanced TCR diversity of peripheral blood mononuclear cells (PBMCs) predicted better prognosis, indicative of a noninvasive method for relapse surveillance. Eventually, seven machine-learning (ML) algorithms were employed to evaluate the predictive accuracy of clinical, genomic, transcriptomic, and TCR repertoire data on DFS, showing that clinical and RNA features combination in the random forest (RF) algorithm, with area under the curve (AUC) of 97.5% and 83.3% in the training and testing cohort, respectively, significantly outperformed other methods. Conclusions This study comprehensively profiled the genomic, transcriptomic, and TCR repertoire spectrums of Chinese early-stage Ns-NSCLC, shedding light on biological underpinnings and candidate biomarkers for prognosis development.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Shaopeng Liu
- Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- Department of Artificial Intelligence Research, Pazhou Lab, Guangzhou, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cener for Cancer Medicine, Guangzhou, China
| | - Mengping Shi
- Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Xu Lu
- Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- Department of Artificial Intelligence Research, Pazhou Lab, Guangzhou, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Medical Oncology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
2
|
Liu Z, Zhao X, Wang R, Tang X, Zhao Y, Zhong G, Peng X, Zhang C. Heterogeneous pattern of gene expression driven by TTN mutation is involved in the construction of a prognosis model of lung squamous cell carcinoma. Front Oncol 2023; 13:916568. [PMID: 37035196 PMCID: PMC10080394 DOI: 10.3389/fonc.2023.916568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/09/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To investigate the impact that TTN mutation had on the gene heterogeneity expression and prognosis in patients with lung adenocarcinoma. Methods In this study, the Cancer Genome Atlas (TCGA) dataset was used to analyze the TTN mutations in lung adenocarcinoma. Lung adenocarcinoma data was collected from the TCGA database, clinical information of patients was analyzed, and bioinformatics statistical methods were applied for mutation analysis and prognosis survival analysis. The results were verified using the GEO dataset. Results The incidence of TTN mutations in lung adenocarcinoma was found to be 73%, and it was related to the prognosis of lung adenocarcinoma. Ten genes were screened with significant contributions to prognosis. A prognosis model was constructed and verified by LASSO COX analysis in the TCGA and GEO datasets based on these ten beneficial factors. The independent prognostic factor H2BC9 for TTN mutation-driven gene heterogeneity expression was screened through multi-factor COX regression analysis. Conclusion Our data showed that the gene heterogeneity expression, which was driven by TTN mutations, prolonged the survival of lung adenocarcinoma patients and provided valuable clues for the prognosis of TTN gene mutations in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhao Liu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Xiaowen Zhao
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ruihong Wang
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Xiangyue Tang
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Yuxiang Zhao
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Guanghui Zhong
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| | - Chunlin Zhang
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| |
Collapse
|
3
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
4
|
Liao C, Wang Q, An J, Long Q, Wang H, Xiang M, Xiang M, Zhao Y, Liu Y, Liu J, Guan X. Partial EMT in Squamous Cell Carcinoma: A Snapshot. Int J Biol Sci 2021; 17:3036-3047. [PMID: 34421348 PMCID: PMC8375241 DOI: 10.7150/ijbs.61566] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
In the process of cancer EMT, some subgroups of cancer cells simultaneously exhibit both mesenchymal and epithelial characteristics, a phenomenon termed partial EMT (pEMT). pEMT is a plastic state in which cells coexpress epithelial and mesenchymal markers. In squamous cell carcinoma (SCC), pEMT is regulated, and the phenotype is maintained via the HIPPO pathway, NOTCH pathway and TGF-β pathways and by microRNAs, lncRNAs and the cancer microenvironment (CME); thus, SCC exhibits aggressive tumorigenic properties and high stemness, which leads collective migration and therapy resistance. Few studies have reported therapeutic interventions to address cells that have undergone pEMT, and this approach may be an effective way to inhibit the plasticity, drug resistance and metastatic potential of SCC.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Meiling Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yujie Zhao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Yulin Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
5
|
Chen S, Lu H, Chen G, Yang J, Huang W, Wang X, Huang S, Gao L, Liu J, Fu Z, Chen P, Zhai G, Luo J, Li X, Huang Z, Li Z, Gan T, Yang D, Mo W, Zhou H. Downregulation of miRNA-126-3p is associated with progression of and poor prognosis for lung squamous cell carcinoma. FEBS Open Bio 2020; 10:1624-1641. [PMID: 32598517 PMCID: PMC7396450 DOI: 10.1002/2211-5463.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is the main pathological type of pulmonary malignant tumors; at present, less than 10% of patients with advanced metastatic LUSC live for more than 5 years. We previously reported that low expression of miRNA-126-3p is associated with the occurrence and progression of lung adenocarcinoma (LUAD). Here, we examined expression of miRNA-126-3p in 23 samples from patients with LUSCs and 23 normal control specimens by quantitative real-time PCR (RT-qPCR). Associations between miRNA-126-3p expression and clinical features were studied from materials derived from Gene Expression Omnibus (GEO) chips and The Cancer Genome Atlas (TCGA) database. Twelve online platforms were used to identify candidate target genes of miRNA-126-3p. Further analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein-protein interaction (PPI) network were performed on the target genes. GEO microarray analysis, TCGA data mining, RT-qPCR, and integration analysis consistently reported low expression of miRNA-126-3p in LUSC. A total of 42 genes were identified as potential target genes of miRNA-126-3p from online platforms, GEO microarrays, and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in several biological processes that promote the progression of LUSC. SOX2, E2F2, and E2F3 were selected as hub genes from the PPI network for further analysis. In summary, our results suggest that the low expression of miRNA-126-3p may play a role in promoting the development of LUSC and miRNA-126-3p may be a biomarker for LUSC early diagnosis and prognosis.
Collapse
Affiliation(s)
- Shang‐Wei Chen
- Department of Thoracic and Cardiovascular DiseasesFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hui‐Ping Lu
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jie Yang
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningChina
| | - Wan‐Ying Huang
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiang‐Ming Wang
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shu‐Ping Huang
- Department of Medical OncologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Li Gao
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jun Liu
- Department of Thoracic and Cardiovascular DiseasesFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zong‐Wang Fu
- Department of Thoracic and Cardiovascular DiseasesFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Peng Chen
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao‐Qiang Zhai
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jiao Luo
- Department of Thoracic and Cardiovascular DiseasesFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiao‐Jiao Li
- Department of PET/CTFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zu‐Yun Li
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Ting‐Qing Gan
- Department of Medical OncologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Da‐Ping Yang
- Department of PathologyGuigang People's Hospital of Guangxi/the Eighth Affiliated Hospital of Guangxi Medical UniversityGuigangChina
| | - Wei‐Jia Mo
- Department of PathologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hua‐Fu Zhou
- Department of Thoracic and Cardiovascular DiseasesFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
6
|
Shimizu K, Goto Y, Kawabata-Iwakawa R, Ohtaki Y, Nakazawa S, Yokobori T, Obayashi K, Kawatani N, Yajima T, Kaira K, Mogi A, Hirato J, Nishiyama M, Shirabe K. Stathmin-1 Is a Useful Diagnostic Marker for High-Grade Lung Neuroendocrine Tumors. Ann Thorac Surg 2019; 108:235-243. [PMID: 30910656 DOI: 10.1016/j.athoracsur.2019.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/29/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stathmin-1 regulates microtubule dynamics and is associated with malignant phenotypes in non-small cell lung cancer (NSCLC). This study evaluated its diagnostic value for differentiating between NSCLC and high-grade lung neuroendocrine tumor (HGNET). METHODS Stathmin-1 protein expression was assessed by immunohistochemistry in 414 NSCLC (305 adenocarcinoma [AD], 102 squamous cell carcinoma [SCC], 7 large-cell carcinoma), 5 typical carcinoid (low-grade lung neuroendocrine tumor), and 34 HGNET (17 small-cell carcinoma [SCLC] and 17 large-cell neuroendocrine carcinoma [LCNEC]) surgical specimens and 57 NSCLC (29 AD and 28 SCC) and 42 HGNET (17 LCNEC and 25 SCLC) biopsy specimens. We also analyzed stathmin-1 mRNA levels in 81 NSCLCs and 26 HGNETs with the use of reverse transcription-polymerase chain reaction. RESULTS Among NSCLC samples, we saw high stathmin-1 protein expression in only three ADs, one SCC, and one large-cell carcinoma surgical samples, all five of which showed neuroendocrine characteristics in pathologic re-review; and low or intermediate expression in all five typical carcinoid surgical samples and all 57 NSCLC biopsy samples. In contrast, all HGNET surgical (n = 34) and biopsy (n = 42) samples showed high stathmin-1 expression. In reverse transcription-polymerase chain reaction, stathmin-1 expression was significantly higher in HGNET tissues than in NSCLC tissues (p < 0.001). CONCLUSIONS Stathmin-1 expression can help in differentiating NSCLC from HGNET.
Collapse
Affiliation(s)
- Kimihiro Shimizu
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan.
| | - Yusuke Goto
- Department of Pathology, Gunma University Hospital, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Yoichi Ohtaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Seshiru Nakazawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan; Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Kai Obayashi
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Natsuko Kawatani
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Toshiki Yajima
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Gunma, Japan
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
7
|
Peng F, Li Q, Niu SQ, Shen GP, Luo Y, Chen M, Bao Y. ZWINT is the next potential target for lung cancer therapy. J Cancer Res Clin Oncol 2019; 145:661-673. [PMID: 30643969 DOI: 10.1007/s00432-018-2823-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE We aimed to analyze the expression of ZWINT, NUSAP1, DLGAP5, and PRC1 in tumor tissues and adjacent tissues with public data. METHODS The expression patterns of four genes were detected in cancer tissues and adjacent tissues by qRT-PCR. The overall survival analysis was used to explore these genes in lung adenocarcinoma and squamous cell carcinoma patients. Knockdown assays were used to select the most suitable gene among these four genes. Cell function assays with the knockdown gene were conducted in A549 and NCL H226 cells. The role of the knockdown gene in lung cancer was dissected in a mice tumor model. Transcriptome sequencing analyses with the knockdown gene were analyzed. RESULTS Overexpression of these genes was significantly detected in cancer tissues (P < 0.01). Overall survival revealed that high expression of these genes is closely related with poor prognosis of lung adenocarcinoma patients (P < 0.05). Knockdown of ZWINT reduced proliferation in NCI H226 and A549 cells (P < 0.05). Knockdown also inhibited cell migration, invasion, apoptosis, and colony formation (P < 0.05). ZWINT knockdown reduced tumor volume (P < 0.05). Transcriptome sequencing of ZWINT knockdown-treated A549 and NCI H226 cells indicated that 100 and 426 differentially expressed genes were obtained, respectively. Gene ontology analysis suggested that binding, biological regulation, and multicellular organismal processes were the most enriched. KEGG analysis revealed that TNF, P53, and PI3K signal networks would be the most potential ZWINT-related pathways and were identified by Western blot analysis. CONCLUSIONS ZWINT may be a novel target for lung cancer therapy.
Collapse
Affiliation(s)
- Fang Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Qiang Li
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shao-Qing Niu
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Guo-Ping Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ying Luo
- Department of Clinical Laboratory, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming Chen
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, 1 East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China.
| | - Yong Bao
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
10
|
Expression ratio of the TGFβ-inducible gene MYO10 is prognostic for overall survival of squamous cell lung cancer patients and predicts chemotherapy response. Sci Rep 2018; 8:9517. [PMID: 29934580 PMCID: PMC6015003 DOI: 10.1038/s41598-018-27912-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
In lung cancer a deregulation of Transforming Growth Factor-β (TGFβ) signaling has been observed. Yet, the impact of TGFβ in squamous cell carcinoma of the lung (LUSC) remained to be determined. We combined phenotypic and transcriptome-wide studies and showed that the stimulation of the LUSC cell line SK-MES1 with TGFβ results in an increase of migratory invasive properties. The analysis of the dynamics of gene expression by next-generation sequencing revealed that TGFβ stimulation orchestrates the upregulation of numerous motility- and actin cytoskeleton-related genes. Among these the non-muscle myosin 10 (MYO10) showed the highest upregulation in a LUSC patient cohort of the Cancer Genome Atlas (TCGA). Knockdown of MYO10 abrogated TGFβ-induced collagen gel invasion of SK-MES1 cells. The analysis of MYO10 mRNA expression in paired tissues of 151 LUSC patients with corresponding 80-month clinical follow-up data showed that the mRNA expression ratio of MYO10 in tumor and tumor-free tissue is prognostic for overall survival of LUSC patients and predictive for the response of these patients to adjuvant chemotherapy. Thus, MYO10 represents a new clinical biomarker for this aggressive disease and due to its role in cellular motility and invasion could serve as a potential molecular target for therapeutic interventions in patients with LUSC.
Collapse
|
11
|
Choi M, Kadara H, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J, Chow C, Kim K, Kalhor N, Moran C, Rimm D, Swisher S, Gibbons DL, Heymach J, Kaftan E, Townsend JP, Lynch TJ, Schlessinger J, Lee J, Lifton RP, Herbst RS, Wistuba II. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function. Ann Oncol 2018; 28:83-89. [PMID: 28177435 DOI: 10.1093/annonc/mdw437] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Methods Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. Results This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Conclusion(s) Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.
Collapse
Affiliation(s)
- M Choi
- Department of Genetics, Howard Hughes Medical Institute, Maryland
| | - H Kadara
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - J Zhang
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - E R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S G Gaffney
- Department of Ecology and Evolutionary Biology, Yale University, New Haven,Department of Yale School of Public Health
| | - Z Zhao
- Department of Ecology and Evolutionary Biology, Yale University, New Haven,Department of Yale School of Public Health
| | - C Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - C Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - K Kim
- Department of Biomedical Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - N Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - C Moran
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - D Rimm
- Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven
| | - S Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - D L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - E Kaftan
- Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven
| | - J P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven,Department of Yale School of Public Health
| | - T J Lynch
- Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven
| | - J Schlessinger
- Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven
| | - J Lee
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - R P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Maryland,Yale Center for Genome Analysis, Yale School of Medicine, Yale University, New Haven, USA
| | - R S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven
| | - I I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
12
|
Liu Y, Zhang Y, Zhang L, Liu B, Wang Y, Zhou X, Li Y, Zhao Q, Gong Y, Zhou L, Zhu J, Ding Z, Wang J, Peng F, Huang M, Li L, Ren L, Lu Y. Efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors for lung squamous carcinomas harboring EGFR mutation: A multicenter study and pooled analysis of published reports. Oncotarget 2017; 8:49680-49688. [PMID: 28591695 PMCID: PMC5564798 DOI: 10.18632/oncotarget.17915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are common in lung adenocarcinoma (ADC) but rare in squamous cell carcinoma (SQC). The efficacy of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) for SQC with EGFR mutations is unclear. The aim of this study was to evaluate the efficacy of EGFR-TKIs for these patients. We performed a retrospective matched-pair case-control study from 3 cancer centers, including 44 SQC and 44 ADC patients with EGFR mutation who were treated with EGFR-TKI. Subsequently, we performed a pooled analysis on the efficacy of EGFR-TKIs for EGFR-mutant SQC in 115 patients, including 71 patients selected from 25 published reports. In our multicenter study, EGFR-mutant SQC and ADC patients had similar objective response rate (ORR) (43.2% vs. 54.5%, p = 0.290), but SQC patients had lower disease control rate (DCR) (71.3% vs. 100%, p = 0.001), significant shorter median progression free survival (PFS) (5.1 vs. 13.0 months, p = 0.000) and median overall survival (OS) (17.2 vs. 23.6 months, p = 0.027). In pooled analysis, the ORR, DCR, PFS and OS of SQC patients were 39.1%, 71.3%, 5.6 months and 15.0 months, respectively. Performance status was the only independent predictor of PFS and erlotinib treatment was associated with a better survival. In conclusion, EGFR-TKI was less effective in EGFR-mutant SQC than in ADC but still has clinical benefit for SQC patients. Further study is need to evaluate the using of EGFR-TKIs in these SQC patients.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bin Liu
- Pulmonary Tumor Ward, Sichuan Cancer Hospital, Chengdu, China
| | - Yongsheng Wang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanying Li
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Youling Gong
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Ding
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Peng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meijuan Huang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Ren
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Shum E, Wang F, Kim S, Perez-Soler R, Cheng H. Investigational therapies for squamous cell lung cancer: from animal studies to phase II trials. Expert Opin Investig Drugs 2017; 26:415-426. [PMID: 28277882 DOI: 10.1080/13543784.2017.1302425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION It remains challenging to treat squamous cell lung cancer (SCC) with limited therapeutic options. However, recent breakthroughs in targeted therapies and immunotherapies have shed some light on the management of this deadly disease. Areas covered: The article first reviews the current treatment options for advanced SCC, especially recent FDA approved molecular agents (afatinib, ramucirumab and necitumumab) and immunotherapies (nivolumab, pembrolizumab and atezolimumab). We then provide an overview on investigational therapies with data ranging from preclinical to phase II studies, focusing on new cytotoxic agents, emerging molecularly targeted agents (including a PARP inhibitor for Homologous Recombinant Deficiency positive SCC) and novel immunotherapeutic strategies. Expert opinion summary: Identification of potential therapeutic targets, development of novel clinical trials and the rapid approvals of immune checkpoint inhibitors have shifted the management paradigm for squamous cell lung cancer. On the other hand, continued efforts are needed to identify the predictive biomarkers and to investigate novel mechanistically-driven mono- and combination therapies. We need to learn more about the biology behind immune checkpoint blockade and tumor genomics in SCC for better patient selection and future trial design.
Collapse
Affiliation(s)
- Elaine Shum
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Feng Wang
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Salem Kim
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Roman Perez-Soler
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
14
|
Budczies J, Bockmayr M, Denkert C, Klauschen F, Gröschel S, Darb-Esfahani S, Pfarr N, Leichsenring J, Onozato ML, Lennerz JK, Dietel M, Fröhling S, Schirmacher P, Iafrate AJ, Weichert W, Stenzinger A. Pan-cancer analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274) - associations with gene expression, mutational load, and survival. Genes Chromosomes Cancer 2016; 55:626-39. [PMID: 27106868 DOI: 10.1002/gcc.22365] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the PD-L1 (CD274) - PD-1 axis has emerged as a powerful cancer therapy that prevents evasion of tumor cells from the immune system. While immunohistochemical detection of PD-L1 was introduced as a predictive biomarker with variable power, much less is known about copy number alterations (CNA) affecting PD-L1 and their associations with expression levels, mutational load, and survival. To gain insight, we employed The Cancer Genome Atlas (TCGA) datasets to comprehensively analyze 22 major cancer types for PD-L1 CNAs. We observed a diverse landscape of PD-L1 CNAs, which affected focal regions, chromosome 9p or the entire chromosome 9. Deletions of PD-L1 were more frequent than gains (31% vs. 12%) with deletions being most prevalent in melanoma and non-small cell lung cancer. Copy number gains most frequently occurred in ovarian cancer, head and neck cancer, bladder cancer, cervical and endocervical cancer, sarcomas, and colorectal cancers. Fine-mapping of the genetic architecture revealed specific recurrently amplified and deleted core regions across cancers with putative biological and clinical consequences. PD-L1 CNAs correlated significantly with PD-L1 mRNA expression changes in many cancer types, and tumors with PD-L1 gains harbored significantly higher mutational load compared to non-amplified cases (median: 78 non-synonymous mutations vs. 40, P = 7.1e-69). Moreover, we observed that, in general, both PD-L1 amplifications and deletions were associated with dismal prognosis. In conclusion, PD-L1 CNAs, in particular PD-L1 copy number gains, represent frequent genetic alterations across many cancers, which influence PD-L1 expression levels, are associated with higher mutational loads, and may be exploitable as predictive biomarker for immunotherapy regimens. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany.,German Cancer Consortium (DKTK), Germany
| | - Michael Bockmayr
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Charité University Hospital, Berlin, Germany.,German Cancer Consortium (DKTK), Germany
| | | | - Stefan Gröschel
- German Cancer Consortium (DKTK), Germany.,Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Nicole Pfarr
- Institute of Pathology, Technical University Munich, Germany
| | | | - Maristela L Onozato
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, MA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, MA
| | - Manfred Dietel
- Institute of Pathology, Charité University Hospital, Berlin, Germany.,German Cancer Consortium (DKTK), Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Germany.,Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Consortium (DKTK), Germany.,Institute of Pathology, University Hospital Heidelberg, Germany
| | - A John Iafrate
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, MA
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Germany.,Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, MA
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Germany.,Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, MA.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
15
|
Lung Cancer Genomics in the Era of Accelerated Targeted Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:1-23. [PMID: 26703796 DOI: 10.1007/978-3-319-24932-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States and the 5-year overall survival outlook for a patient has not improved in several decades. Recently, however, molecular and genomic profiling of the lung tumors has revealed recurring somatic mutations. As a result the therapeutic landscape of lung cancer is undergoing a paradigm shift from a purely histology-based understanding of the disease to subtype distinctions based on tumor genetics, which has launched cancer-specific, mechanism-based targeted therapies with clear benefit to patients. While targeted therapy advancements are being made at an ever increasing rate, a new challenge in the form of drug resistance has also emerged. This review summarizes the current literature for these issues.
Collapse
|
16
|
Gavine PR, Wang M, Yu D, Hu E, Huang C, Xia J, Su X, Fan J, Zhang T, Ye Q, Zheng L, Zhu G, Qian Z, Luo Q, Hou YY, Ji Q. Identification and validation of dysregulated MAPK7 (ERK5) as a novel oncogenic target in squamous cell lung and esophageal carcinoma. BMC Cancer 2015; 15:454. [PMID: 26040563 PMCID: PMC4453990 DOI: 10.1186/s12885-015-1455-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/20/2015] [Indexed: 01/23/2023] Open
Abstract
Background MAPK7/ERK5 (extracellular-signal-regulated kinase 5) functions within a canonical three-tiered MAPK (mitogen activated protein kinase) signaling cascade comprising MEK (MAPK/ERK kinase) 5, MEKK(MEK kinase) 2/3 and ERK5 itself. Despite being the least well studied of the MAPK-modules, evidence supports a role for MAPK7-signaling in the pathology of several cancer types. Methods and results Fluorescence in situ hybridization (FISH) analysis identified MAPK7 gene amplification in 4 % (3/74) of non-small cell lung cancers (NSCLC) (enriched to 6 % (3/49) in squamous cell carcinoma) and 2 % (2/95) of squamous esophageal cancers (sqEC). Immunohistochemical (IHC) analysis revealed a good correlation between MAPK7 gene amplification and protein expression. MAPK7 was validated as a proliferative oncogenic driver by performing in vitro siRNA knockdown of MAPK7 in tumor cell lines. Finally, a novel MEK5/MAPK7 co-transfected HEK293 cell line was developed and used for routine cell-based pharmacodynamic screening. Phosphorylation antibody microarray analysis also identified novel downstream pharmacodynamic (PD) biomarkers of MAPK7 kinase inhibition in tumor cells (pMEF2A and pMEF2D). Conclusions Together, these data highlight a broader role for dysregulated MAPK7 in driving tumorigenesis within niche populations of highly prevalent tumor types, and describe current efforts in establishing a robust drug discovery screening cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1455-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul R Gavine
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Mei Wang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Dehua Yu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Eva Hu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Chunlei Huang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Jenny Xia
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Xinying Su
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Joan Fan
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Tianwei Zhang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Qingqing Ye
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Li Zheng
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Guanshan Zhu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Ziliang Qian
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Qingquan Luo
- Shanghai Chest Hospital, Shanghai, People's Republic of China.
| | - Ying Yong Hou
- Shanghai Zhongshan Hospital, Shanghai, People's Republic of China.
| | - Qunsheng Ji
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
17
|
Schwaederle M, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Squamousness: Next-generation sequencing reveals shared molecular features across squamous tumor types. Cell Cycle 2015; 14:2355-61. [PMID: 26030731 PMCID: PMC4613537 DOI: 10.1080/15384101.2015.1053669] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In order to gain a better understanding of the underlying biology of squamous cell carcinoma (SCC), we tested the hypothesis that SCC originating from different organs may possess common molecular alterations. SCC samples (N = 361) were examined using clinical-grade targeted next-generation sequencing (NGS). The most frequent SCC tumor types were head and neck, lung, cutaneous, gastrointestinal and gynecologic cancers. The most common gene alterations were TP53 (64.5% of patients), PIK3CA (28.5%), CDKN2A (24.4%), SOX2 (17.7%), and CCND1 (15.8%). By comparing NGS results of our SCC cohort to a non-SCC cohort (N = 277), we found that CDKN2A, SOX2, NOTCH1, TP53, PIK3CA, CCND1, and FBXW7 were significantly more frequently altered, unlike KRAS, which was less frequently altered in SCC specimens (all P < 0.05; multivariable analysis). Therefore, we identified “squamousness” gene signatures (TP53, PIK3CA, CCND1, CDKN2A, SOX2, NOTCH 1, and FBXW7 aberrations, and absence of KRAS alterations) that were significantly more frequent in SCC versus non-SCC histologies. A multivariable co-alteration analysis established 2 SCC subgroups: (i) patients in whom TP53 and cyclin pathway (CDKN2A and CCND1) alterations strongly correlated but in whom PIK3CA aberrations were less frequent; and (ii) patients with PIK3CA alterations in whom TP53 mutations were less frequent (all P ≤ 0 .001, multivariable analysis). In conclusion, we identified a set of 8 genes altered with significantly different frequencies when SCC and non-SCC were compared, suggesting the existence of patterns for “squamousness.” Targeting the PI3K-AKT-mTOR and/or cyclin pathway components in SCC may be warranted.
Collapse
Affiliation(s)
- Maria Schwaederle
- a Center for Personalized Cancer Therapy; University of California San Diego Moores Cancer Center ; La Jolla , CA USA
| | | | | | | | | |
Collapse
|
18
|
Araujo LH, Timmers C, Bell EH, Shilo K, Lammers PE, Zhao W, Natarajan TG, Miller CJ, Zhang J, Yilmaz AS, Liu T, Coombes K, Amann J, Carbone DP. Genomic Characterization of Non-Small-Cell Lung Cancer in African Americans by Targeted Massively Parallel Sequencing. J Clin Oncol 2015; 33:1966-73. [PMID: 25918285 DOI: 10.1200/jco.2014.59.2444] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Technologic advances have enabled the comprehensive analysis of genetic perturbations in non-small-cell lung cancer (NSCLC); however, African Americans have often been underrepresented in these studies. This ethnic group has higher lung cancer incidence and mortality rates, and some studies have suggested a lower incidence of epidermal growth factor receptor mutations. Herein, we report the most in-depth molecular profile of NSCLC in African Americans to date. METHODS A custom panel was designed to cover the coding regions of 81 NSCLC-related genes and 40 ancestry-informative markers. Clinical samples were sequenced on a massively parallel sequencing instrument, and anaplastic lymphoma kinase translocation was evaluated by fluorescent in situ hybridization. RESULTS The study cohort included 99 patients (61% males, 94% smokers) comprising 31 squamous and 68 nonsquamous cell carcinomas. We detected 227 nonsilent variants in the coding sequence, including 24 samples with nonoverlapping, classic driver alterations. The frequency of driver mutations was not significantly different from that of whites, and no association was found between genetic ancestry and the presence of somatic mutations. Copy number alteration analysis disclosed distinguishable amplifications in the 3q chromosome arm in squamous cell carcinomas and pointed toward a handful of targetable alterations. We also found frequent SMARCA4 mutations and protein loss, mostly in driver-negative tumors. CONCLUSION Our data suggest that African American ancestry may not be significantly different from European/white background for the presence of somatic driver mutations in NSCLC. Furthermore, we demonstrated that using a comprehensive genotyping approach could identify numerous targetable alterations, with potential impact on therapeutic decisions.
Collapse
Affiliation(s)
- Luiz H Araujo
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Cynthia Timmers
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Erica Hlavin Bell
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Konstantin Shilo
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Philip E Lammers
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Weiqiang Zhao
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Thanemozhi G Natarajan
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Clinton J Miller
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Jianying Zhang
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Ayse S Yilmaz
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Tom Liu
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Kevin Coombes
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - Joseph Amann
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN
| | - David P Carbone
- Luiz H. Araujo, Cynthia Timmers, Erica Hlavin Bell, Konstantin Shilo, Weiqiang Zhao, Jianying Zhang, Ayse S. Yilmaz, Tom Liu, Kevin Coombes, Joseph Amann, and David P. Carbone, The Ohio State University Comprehensive Cancer Center, Columbus; Thanemozhi G. Natarajan and Clinton J. Miller, GenomOncology, Cleveland, OH; Philip E. Lammers, Meharry Medical College, Nashville, TN.
| |
Collapse
|
19
|
Herbst RS, Gandara DR, Hirsch FR, Redman MW, LeBlanc M, Mack PC, Schwartz LH, Vokes E, Ramalingam SS, Bradley JD, Sparks D, Zhou Y, Miwa C, Miller VA, Yelensky R, Li Y, Allen JD, Sigal EV, Wholley D, Sigman CC, Blumenthal GM, Malik S, Kelloff GJ, Abrams JS, Blanke CD, Papadimitrakopoulou VA. Lung Master Protocol (Lung-MAP)-A Biomarker-Driven Protocol for Accelerating Development of Therapies for Squamous Cell Lung Cancer: SWOG S1400. Clin Cancer Res 2015; 21:1514-24. [PMID: 25680375 PMCID: PMC4654466 DOI: 10.1158/1078-0432.ccr-13-3473] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/12/2015] [Indexed: 11/16/2022]
Abstract
The Lung Master Protocol (Lung-MAP, S1400) is a groundbreaking clinical trial designed to advance the efficient development of targeted therapies for squamous cell carcinoma (SCC) of the lung. There are no approved targeted therapies specific to advanced lung SCC, although The Cancer Genome Atlas project and similar studies have detected a significant number of somatic gene mutations/amplifications in lung SCC, some of which are targetable by investigational agents. However, the frequency of these changes is low (5%-20%), making recruitment and study conduct challenging in the traditional clinical trial setting. Here, we describe our approach to development of a biomarker-driven phase II/II multisubstudy "Master Protocol," using a common platform (next-generation DNA sequencing) to identify actionable molecular abnormalities, followed by randomization to the relevant targeted therapy versus standard of care.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| | - David R Gandara
- University of California Davis Cancer Center, Sacramento, California
| | - Fred R Hirsch
- Department of Medical Oncology, University of Colorado Health Sciences Center, Aurora, Colorado
| | - Mary W Redman
- SWOG Statistical Center; Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael LeBlanc
- SWOG Statistical Center; Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip C Mack
- University of California Davis Cancer Center, Sacramento, California
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Medical College, New York, New York
| | - Everett Vokes
- Department of Medicine, University of Chicago Medicine and Biologic Sciences, Chicago, Illinois
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Yang Zhou
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | - Yali Li
- Foundation Medicine, Cambridge, Massachusetts
| | - Jeff D Allen
- Friends of Cancer Research, Washington, District of Columbia
| | - Ellen V Sigal
- Friends of Cancer Research, Washington, District of Columbia
| | - David Wholley
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | | | - Gideon M Blumenthal
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Shakun Malik
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Gary J Kelloff
- Cancer Imaging Program, National Cancer Institute, Bethesda, Maryland
| | - Jeffrey S Abrams
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | - Charles D Blanke
- SWOG Group Chair's Office; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
20
|
Marzese DM, Hoon DS. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Rev Mol Diagn 2015; 15:647-64. [PMID: 25797072 DOI: 10.1586/14737159.2015.1027194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping have been developed recently and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, Saint John's Health Center, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | |
Collapse
|
21
|
Huang T, Yang J, Cai YD. Novel candidate key drivers in the integrative network of genes, microRNAs, methylations, and copy number variations in squamous cell lung carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:358125. [PMID: 25802847 PMCID: PMC4352729 DOI: 10.1155/2015/358125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/03/2023]
Abstract
The mechanisms of lung cancer are highly complex. Not only mRNA gene expression but also microRNAs, DNA methylation, and copy number variation (CNV) play roles in tumorigenesis. It is difficult to incorporate so much information into a single model that can comprehensively reflect all these lung cancer mechanisms. In this study, we analyzed the 129 TCGA (The Cancer Genome Atlas) squamous cell lung carcinoma samples with gene expression, microRNA expression, DNA methylation, and CNV data. First, we used variance inflation factor (VIF) regression to build the whole genome integrative network. Then, we isolated the lung cancer subnetwork by identifying the known lung cancer genes and their direct regulators. This subnetwork was refined by the Bayesian method, and the directed regulations among mRNA genes, microRNAs, methylations, and CNVs were obtained. The novel candidate key drivers in this refined subnetwork, such as the methylation of ARHGDIB and HOXD3, microRNA let-7a and miR-31, and the CNV of AGAP2, were identified and analyzed. On three large public available lung cancer datasets, the key drivers ARHGDIB and HOXD3 demonstrated significant associations with the overall survival of lung cancer patients. Our results provide new insights into lung cancer mechanisms.
Collapse
Affiliation(s)
- Tao Huang
- College of Life Science, Shanghai University, Shanghai 200444, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jing Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yu-dong Cai
- College of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|