1
|
Lucà S, Accardo M, Campione S, Franco R. Immunotherapy in thymic epithelial tumors: tissue predictive biomarkers for immune checkpoint inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:465-476. [PMID: 38966177 PMCID: PMC11220306 DOI: 10.37349/etat.2024.00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 07/06/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare malignant neoplasms arising in the thymus gland. Nevertheless, TETs, including thymomas (TMs), thymic carcinomas (TCs), and thymic neuroendocrine neoplasms (TNENs), are the most common mediastinal malignancies overall. A multidisciplinary approach is required for the appropriate diagnostic and therapeutic management of TETs. To date, the main therapeutic strategies are largely depended on the stage of the tumor and they include surgery with or without neoadjuvant or adjuvant therapy, represented by platinum-based chemotherapy, radiotherapy or chemoradiotherapy. Immune checkpoint inhibitors (ICIs) are ongoing under evaluation in the advanced or metastatic diseases despite the challenges related to the very low tumor mutation burden (TMB) and the high incidence of immune-related adverse events in TETs. In this regard, predictive impact of tissue biomarkers expression such as programmed cell death ligand-1 (PD-L1), and other emerging biomarkers, as well as their optimal and shared interpretation are currently under evaluation in order to predict response rates to ICIs in TETs.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Severo Campione
- Department of Advanced Diagnostic-Therapeutic Technologies and Health Services Section of Anatomic Pathology, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
2
|
Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, Afzal O, Altamimi ASA, Singh SK, Chellappan DK, Dua K, Gupta G. Recent Developments and Challenges in Molecular-Targeted Therapy of Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:27-50. [PMID: 36734951 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042983] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
The association of TAP polymorphisms with non-small-cell lung cancer in the Han Chinese population. Hum Immunol 2021; 82:917-922. [PMID: 34373132 DOI: 10.1016/j.humimm.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
The host immune system plays a crucial role in multiple types of cancer, including non-small-cell lung cancer (NSCLC). Transporter associated with antigen processing (TAP) protein heterodimer complexes might promote intracellular antigen peptide binding with class I major histocompatibility complex (MHC-I) molecules, and in recent years, TAP1 and TAP2 have been reported to be associated with multiple cancer risks. In the current study, we investigated the association of single-nucleotide polymorphisms (SNPs) in TAP1 and TAP2 with NSCLC in a Han Chinese population. Six and seven TAP1 and TAP2 SNPs, respectively, were genotyped and analysed in healthy controls and NSCLC patients. Based on our data, none of the six SNPs in TAP1 is associated with NSCLC risk (P > 0.0038). However, rs2228396 alleles in TAP2 were significantly different between NSCLC patients and healthy controls, and the A allele might be associated with an increased risk of this cancer (P = 0.001, OR = 1.65, 95%CI: 1.23 ∼ 2.21). Moreover, the genotype frequencies of rs2228396 were significantly different between patients and healthy controls (P = 7 × 10-4). Additionally, TAP2 rs241441 alleles exhibited a trend of difference between NSCLC patients and healthy controls, with the C allele possibly being associated with increased risk of NSCLC (P = 0.013; OR = 1.30, 95%CI: 1.06 ∼ 1.60). Moreover, the genotypes of rs241441 in TAP2 showed a significant difference between NSCLC patients and healthy controls (P = 1 × 10-4). In haplotype analysis, the TAP2 SNP haplotype (CAC, TAP2*0102) was significantly associated with increased NSCLC risk in the Han Chinese population (P = 0.003; OR = 1.57, 95%CI: 1.17 ∼ 2.10). Our results indicate that TAP2 SNPs (rs2228396 and rs241441) have a potential role in NSCLC pathogenesis.
Collapse
|
4
|
Shan F, Sun L, Zhang L, Guo K, Yan Q, Feng G, Zhu Y, Shen M, Ruan S. Inhibition to Epithelial-Mesenchymal Transition and Metastatic Potential In Colorectal Cancer Cell By Combination of Traditional Chinese Medicine Formulation Jiedu Sangen Decoction and PD-L1 Inhibitor. Integr Cancer Ther 2020; 19:1534735420972486. [PMID: 33238770 PMCID: PMC7705286 DOI: 10.1177/1534735420972486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Jiedu Sangen Decoction (JSD), a traditional Chinese medicine formula, has been widely applied in the treatment of gastrointestinal cancer, especially in colorectal cancer. Our study mainly aimed to assess the combined efficacy of Jiedu Sangen aqueous extract (JSAE) and a PD-L1 inhibitor (PI) in colon cancer cells migration and invasion, along with epithelial-mesenchymal transition, and then provide deep insights into the potential mechanism. METHODS We explored the inhibitory effects on invasion and metastasis and the reverse effect on EMT process in CT-26 colon cancer cell via Transwell migration assay, Matrigel invasion assay and confocal laser scanning microscopy. Furthermore, regulation in expression of EMT-related proteins and molecular biomarkers and underlying signal pathway proteins were detected through Western blotting and IHC. RESULTS The combination of JSD and PD-L1 inhibitor could inhibit migration, invasive ability and EMT of CT-26 cells in a concentration-dependent manner. Meanwhile, JSD combined with PD-L1 inhibitor could also remarkably reverse EMT and metastasis in vivo. In addition, the protein expression of N-cadherin, Slug, Snail, Vimentin was down-regulated along with E-cadherin s up-regulation with the combination of JSD and PD-L1 inhibitor, while that of PI3K/AKT was notably down-regulated. CONCLUSIONS These findings indicated that JSAE and a PD-L1 inhibitor could drastically inhibit the migration and invasion of colorectal cancer by reversing EMT through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Feiyu Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Leyin Zhang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qingying Yan
- Hangzhou Third Hospital, Hangzhou, Zhejiang, China
| | - Guan Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minhe Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Brassart-Pasco S, Dalstein V, Brassart B, Dewolf M, Clavel C, Oudart JB. Immunotherapy in non-small-cell lung cancer: from targeted molecules to resistance patterns. Pharmacogenomics 2020; 21:705-720. [PMID: 32567537 DOI: 10.2217/pgs-2020-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies are now considered as a pillar of non-small-cell lung cancer treatment. The main targets of immune-checkpoint inhibitors (ICI) are programmed cell death 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte antigen 4, aiming at restoring antitumor immunity. Despite durable responses observed in some patients, all patients do not benefit from the treatment and almost all responders ultimately relapse after some time. In this review, we discuss the biomarkers that could be used to predict response to ICI, the current indications of ICI in non-small-cell lung cancer, the mechanisms inducing tumor-cell intrinsic or extrinsic resistance to ICI and finally, the potential treatment response monitoring.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51100 Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, 51100 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, 51100 Reims, France.,CHU Reims, Service de Pathologie, 51100 Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51100 Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, 51100 Reims, France
| | - Maxime Dewolf
- CHU Reims, Service des maladies respiratoires et allergiques, 51100 Reims, France
| | - Christine Clavel
- Université de Reims Champagne Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, 51100 Reims, France.,CHU Reims, Service de Pathologie, 51100 Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51100 Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, 51100 Reims, France.,CHU Reims, Service de Biochimie-Pharmacologie-Toxicologie, 51100 Reims, France
| |
Collapse
|
6
|
García A, Recondo G, Greco M, de la Vega M, Perazzo F, Recondo G, Avagnina A, Denninghoff V. Correlation between PD-L1 expression (clones 28-8 and SP263) and histopathology in lung adenocarcinoma. Heliyon 2020; 6:e04117. [PMID: 32514486 PMCID: PMC7267734 DOI: 10.1016/j.heliyon.2020.e04117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/23/2019] [Accepted: 05/28/2020] [Indexed: 01/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Recent advances in the management of non-small cell carcinoma are focused on the discovery of targeted therapies and novel immunotherapy strategies for patients with advanced disease. Treatment with anti PD-(L)1 immune checkpoint inhibitors requires the development of predictive biomarkers to select those patients that can most benefit from these therapies. Several immunohistochemical biomarkers have been developed in different technological platforms. However, the most useful and accessible for the daily clinical practice need to be selected. The objective of this study was to compare PD-L1 expression by automated immunohistochemistry in lung adenocarcinoma (ADC) FFPE samples with clones 28-8 and SP263 performed with the BenchMark GX automated staining instrument. To further determine interobserver agreement between two pathologists, and to correlate the results with histologic and pathology variables. FFPE tissue from 40 samples obtained from patients with lung ADC were reviewed retrospectively. Among all studied specimens, 53% of samples presented <1% of positive tumor cells with the 28-8 clone and 50% had <1% of PD-L1 expression in tumor cells with the SP263 clone; PD-L1 expression between ≥1 and <5% was observed in 18% and 24%; ≥5 and <50% PD-L1 expression in 18% and 21%; and ≥50% PD-L1 expression in 11% and 5% of samples, respectively. Similar results between antibodies were observed in 84% of cases for each of the four PD-L1 cutoff groups (Pearson's score 0.90, p < 0.00001). The interobserver degree of agreement calculated with Kappa was 0.75 (95%CI: 0.57-0.93), z = 7.08; p < 0.001. Lepidic, acinar and mucinous patterns had predominantly <1% PD-L1 expression, and the solid pattern subtype had high levels of PD-L1 staining using both clones. PD-L1 expression in less than 1% of tumor cells was similar in stages I/II compared to III/IV. No significant differences were observed in PD-L1 staining and quantification pattern between IHC antibodies 28-8 and SP263.
Collapse
Affiliation(s)
- Alejandro García
- Department of Pathology, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - Gonzalo Recondo
- Department of Oncology, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - Martín Greco
- Department of Oncology, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - Máximo de la Vega
- Department of Oncology, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - Florencia Perazzo
- Department of Oncology, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - Gonzalo Recondo
- Department of Oncology, Center for Medical Education and Clinical Research (CEMIC), Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandra Avagnina
- Department of Pathology, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - Valeria Denninghoff
- Department of Pathology, Center for Medical Education and Clinical Research (CEMIC), Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Efficacy of a small molecule inhibitor of the transcriptional cofactor PC4 in prevention and treatment of non-small cell lung cancer. PLoS One 2020; 15:e0230670. [PMID: 32231397 PMCID: PMC7108703 DOI: 10.1371/journal.pone.0230670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The human positive coactivator 4 (PC4) was originally identified as a multi-functional cofactor capable of mediating transcription activation by diverse gene- and tissue-specific activators. Recent studies suggest that PC4 might also function as a novel cancer biomarker and therapeutic target for different types of cancers. siRNA knockdown studies indicated that down-regulation of PC4 expression could inhibit tumorigeneicity of A549 non-small cell lung cancer tumor model in nude mice. Here we show that AG-1031, a small molecule identified by high throughput screening, can inhibit the double-stranded DNA binding activity of PC4, more effectively than its single-stranded DNA binding activity. AG-1031 also specifically inhibited PC4-dependent transcriptional activation in vitro using purified transcription factors. AG-1031 inhibited proliferation of several cultured cell lines derived from non-small cell lung cancers (NSCLC) and growth of tumors that formed from A549 cell xenografts in immuno-compromised mice. Moreover, pre-injection of AG-1031 in these mice not only reduced tumor size, but also prevented tumor formation in 20% of the animals. AG-1031 treated A549 cells and tumors from AG-1031 treated animals showed a significant decrease in the levels of both PC4 and VEGFC, a key mediator of angiogenesis in cancer. On the other hand, all tested mice remained constant weight during animal trials. These results demonstrated that AG-1031 could be a potential therapy for PC4-positive NSCLC.
Collapse
|
8
|
Zhao C, Rajan A. Immune checkpoint inhibitors for treatment of thymic epithelial tumors: how to maximize benefit and optimize risk? MEDIASTINUM (HONG KONG, CHINA) 2019; 3:35. [PMID: 31608320 PMCID: PMC6788636 DOI: 10.21037/med.2019.08.02] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
A greater understanding of anti-tumor immunity has resulted in rapid development of immunotherapy for a wide variety of cancers. Antibodies targeting the immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1), or its ligand (PD-L1) have demonstrated clinical activity and are approved for treatment of melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma, bladder cancer, head and neck cancers, esophageal cancer, hepatocellular carcinoma, and Hodgkin lymphoma, among others. Treatment is generally well tolerated with relatively few adverse events compared with standard treatments such as chemotherapy. However, immune activation can potentially affect any organ system and a small fraction of patients are at risk for developing severe immune-related adverse events. Immune checkpoint inhibitors (ICIs) and other immunotherapeutic modalities such as cancer vaccines are in nascent stages of development for treatment of thymic epithelial tumors (TETs). Since the thymus plays a key role in the development of immune tolerance, thymic tumors have a unique biology which can influence the risk-benefit balance of immunotherapy. Indeed, early results from clinical trials have demonstrated clinical activity, albeit at a cost of a higher incidence of immune-related adverse events, which seem to particularly affect skeletal and cardiac muscle and the neuromuscular junction. In this paper we describe the effects of thymic physiology on the immune system and review the results of clinical trials that have evaluated immunotherapy for treatment of relapsed thymoma and thymic carcinoma. We review ongoing efforts to mitigate the risk of immune-related complications in patients with TETs receiving immunotherapy and offer our thoughts for making immunotherapy a feasible alternative for treatment of thymic tumors.
Collapse
Affiliation(s)
- Chen Zhao
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Kanwal B, Biswas S, Seminara RS, Jeet C. Immunotherapy in Advanced Non-small Cell Lung Cancer Patients: Ushering Chemotherapy Through the Checkpoint Inhibitors? Cureus 2018; 10:e3254. [PMID: 30416904 PMCID: PMC6217867 DOI: 10.7759/cureus.3254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
New ways of exploiting the immune system for cancer treatment have been tested for decades with moderate outcomes. Based on previous immunotherapy knowledge, agents targeting immune checkpoints seem to be remarkably effective in a wide range of tumors. Immune checkpoint inhibitors in metastatic non-small cell lung cancer (NSCLC) provide longlasting responses in specific patients. Nevertheless, with overall response rates ≤ 20%, combinational protocols for various patient subgroups are needed. A good partner treatment to immunotherapy could be chemotherapy, as it successfully modulates the immune response either by controlling or enhancing the antitumor immune activity. Primary research provides promising results in metastatic NSCLC patients using this approach, but further large-scale trials are needed. The implementation of immunotherapy in nonmetastatic cases is also appealing. We review the potential clinical benefits of immunotherapy alone or in concert with chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Bushra Kanwal
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sharmi Biswas
- Pediatric, California Institute of Behavioral Neurosciences & Psychology, Fairfield, California , USA
| | - Robert S Seminara
- Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Charan Jeet
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Engel-Riedel W, Lowe J, Mattson P, Richard Trout J, Huhn RD, Gargano M, Patchen ML, Walsh R, Trinh MM, Dupuis M, Schneller F. A randomized, controlled trial evaluating the efficacy and safety of BTH1677 in combination with bevacizumab, carboplatin, and paclitaxel in first-line treatment of advanced non-small cell lung cancer. J Immunother Cancer 2018; 6:16. [PMID: 29486797 PMCID: PMC5830087 DOI: 10.1186/s40425-018-0324-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/13/2018] [Indexed: 02/04/2023] Open
Abstract
Background BTH1677, a beta-glucan pathogen-associated molecular pattern molecule, drives an anti-cancer immune response in combination with oncology antibody therapies. This phase II study explored the efficacy, pharmacokinetics (PK), and safety of BTH1677 combined with bevacizumab/carboplatin/paclitaxel in patients with untreated advanced non-small cell lung cancer (NSCLC). Methods Patients were randomized to the BTH1677 arm (N = 61; intravenous [IV] BTH1677, 4 mg/kg, weekly; IV bevacizumab, 15 mg/kg, once each 3-week cycle [Q3W]; IV carboplatin, 6 mg/mL/min Calvert formula area-under-the-curve, Q3W; and IV paclitaxel, 200 mg/m2, Q3W) or Control arm (N = 31; bevacizumab/carboplatin/paclitaxel as above). Carboplatin/paclitaxel was discontinued after 4-6 cycles and patients who responded or remained stable received maintenance therapy with BTH1677/bevacizumab (BTH1677 arm) or bevacizumab (Control arm). Efficacy assessments, based on blinded central radiology review, included objective response rate (ORR; primary endpoint), disease control rate, duration of objective response, and progression-free survival. Overall survival and adverse events (AEs) were also assessed. Results ORR was higher in the BTH1677 vs Control arm but the difference between groups was not statistically significant (60.4% vs 43.5%; P = .2096). All other clinical endpoints also favored the BTH1677 arm but none statistically differed between arms. PK was consistent with previous studies. Although a higher incidence of Grade 3/4 AEs occurred in the BTH1677 vs Control arm (93.2% vs 66.7%), no unexpected AEs were observed. Serious AEs and discontinuations due to AEs were lower in the BTH1677 vs Control arm. Conclusions Improvements in tumor assessments and survival were observed with BTH1677/bevacizumab/carboplatin/paclitaxel compared with control treatment in patients with advanced NSCLC. Trial registration ClinicalTrials.gov registration ID: NCT00874107. Registered 2 April 2009. First participant was enrolled on 29 September 2009.
Collapse
Affiliation(s)
- Walburga Engel-Riedel
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Thoraxchirurgische u. Pneumologische Klinik, Ostmerheimer Str. 200, 51109, Köln, Germany
| | - Jamie Lowe
- Biothera Pharmaceuticals, Inc., 3388 Mike Collins Drive, Suite A, Eagan, MN, 55121, USA
| | - Paulette Mattson
- Biothera Pharmaceuticals, Inc., 3388 Mike Collins Drive, Suite A, Eagan, MN, 55121, USA
| | - J Richard Trout
- Rutgers University, 82 Rittenhouse Circle, Newtown, PA, 18940, USA
| | - Richard D Huhn
- Biothera Pharmaceuticals, Inc., 3388 Mike Collins Drive, Suite A, Eagan, MN, 55121, USA
| | - Michele Gargano
- Biothera Pharmaceuticals, Inc., 3388 Mike Collins Drive, Suite A, Eagan, MN, 55121, USA
| | - Myra L Patchen
- Biothera Pharmaceuticals, Inc., 3388 Mike Collins Drive, Suite A, Eagan, MN, 55121, USA. .,PresentAddress: Immuno Research, Inc., 3388 Mike Collins Drive, Suite B, Eagan, MN, 55121, USA.
| | - Richard Walsh
- Biothera Pharmaceuticals, Inc., 3388 Mike Collins Drive, Suite A, Eagan, MN, 55121, USA
| | - My My Trinh
- Certara Strategic Consulting, 2000 Peel Street, Suite 570, Montréal, Québec, H3A2WS, Canada
| | - Mariève Dupuis
- Certara Strategic Consulting, 2000 Peel Street, Suite 570, Montréal, Québec, H3A2WS, Canada
| | - Folker Schneller
- Medical Clinic and Polyclinic of Klinikum rechts der Isar of Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
11
|
Tang Y, Li G, Wu S, Tang L, Zhang N, Liu J, Zhang S, Yao L. Programmed death ligand 1 expression in esophageal cancer following definitive chemoradiotherapy: Prognostic significance and association with inflammatory biomarkers. Oncol Lett 2018; 15:4988-4996. [PMID: 29552135 PMCID: PMC5840567 DOI: 10.3892/ol.2018.7984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2018] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy with anti-programmed cell death protein 1 or programmed death ligand 1 (PD-L1) agents has demonstrated promising efficacy for the treatment of various types of malignancies. However, the role of PD-L1 as a tumor prognostic marker remains poorly understood. In the present study, the prognostic value of PD-L1 expression in esophageal carcinoma (EC) following definitive chemoradiotherapy (CRT) was investigated, and its associations with three systemic inflammation biomarkers, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and lymphocyte-to-monocyte ratio (LMR) were further explored. A total of 104 patients with non-metastatic EC, who underwent definitive CRT between January 2009 and December 2012, were retrospectively analyzed. The expression of PD-L1 was examined by immunohistochemistry and the impact of PD-L1 expression level on overall survival (OS) was assessed. Furthermore, pretreatment neutrophil, lymphocyte, platelet and monocyte counts were obtained from routine blood tests to calculate the NLR, PLR and LMR. PD-L1 was overexpressed in EC compared with normal esophageal epithelium, with a positive expression rate of 37.5%. Additionally, patients with positive PD-L1 expression had a lower NLR than those with negative PD-L1 expression (P=0.001). On multivariate analysis, the positive staining of PD-L1 was significantly associated with improved OS (HR, 0.6; 95% CI, 0.372–0.965; P=0.035). Kaplan-Meier survival analysis showed a similar result (P=0.009). Additionally, sex (HR, 0.449; 95% CI, 0.229–0.880; P=0.020), clinical stage III (HR, 2.471; 95% CI, 1.171–5.212; P=0.018), and receipt of concurrent chemoradiation (HR, 0.590; 95% CI, 0.368–0.945; P=0.028) were all independent prognostic factors in EC treated with definitive CRT. The correlation of NLR with PD-L1 expression validated the relevance of immunity and inflammation. In summary, the present study demonstrated that positive PD-L1 expression is associated with improved survival in patients with EC treated with radical CRT, indicating that PD-L1 is a promising prognostic marker.
Collapse
Affiliation(s)
- Yating Tang
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shan Wu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lingrong Tang
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Zhang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jinzhao Liu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuo Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Yao
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Cho JH. Immunotherapy for Non-small-cell Lung Cancer: Current Status and Future Obstacles. Immune Netw 2017; 17:378-391. [PMID: 29302251 PMCID: PMC5746608 DOI: 10.4110/in.2017.17.6.378] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the leading causes of death worldwide. There are 2 major subtypes of lung cancer, non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Studies show that NSCLC is the more prevalent type of lung cancer that accounts for approximately 80%-85% of cases. Although, various treatment methods, such as chemotherapy, surgery, and radiation therapy have been used to treat lung cancer patients, there is an emergent need to develop more effective approaches to deal with advanced stages of tumors. Recently, immunotherapy has emerged as a new approach to combat with such tumors. The development and success of programmed cell death 1 (PD-1)/program death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockades in treating metastatic cancers opens a new pavement for the future research. The current mini review discusses the significance of immune checkpoint inhibitors in promoting the death of tumor cells. Additionally, this review also addresses the importance of tumor-specific antigens (neoantigens) in the development of cancer vaccines and major challenges associated with this therapy. Immunotherapy can be a promising approach to treat NSCLC because it stimulates host's own immune system to recognize cancer cells. Therefore, future research should focus on the development of new methodologies to identify novel checkpoint inhibitors and potential neoantigens.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Cho JH, Oezkan F, Koenig M, Otterson GA, Herman JG, He K. Epigenetic Therapeutics and Their Impact in Immunotherapy of Lung Cancer. CURRENT PHARMACOLOGY REPORTS 2017; 3:360-373. [PMID: 29503796 PMCID: PMC5831502 DOI: 10.1007/s40495-017-0110-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States and worldwide. Novel therapeutic developments are critically necessary to improve outcomes for this disease. Aberrant epigenetic change plays an important role in lung cancer development and progression. Therefore, drugs targeting the epigenome are being investigated in the treatment of lung cancer. Monotherapy of epigenetic therapeutics such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have so far not shown any apparent benefit while one of the clinical trials with the combinations of DNMTi and HDACi showed a small positive signal for treating lung cancer. Combinations of DNMTi and HDACi with chemotherapies have some efficacy but are often limited by increased toxicities. Preclinical data and clinical trial results suggest that combining epigenetic therapeutics with targeted therapies might potentially improve outcomes in lung cancer patients. Furthermore, several clinical studies suggest that the HDACi vorinostat could be used as a radiosensitizer in lung cancer patients receiving radiation therapy. Immune checkpoint blockade therapies are revolutionizing lung cancer management. However, only a minority of lung cancer patients experience long-lasting benefits from immunotherapy. The role of epigenetic reprogramming in boosting the effects of immunotherapy is an area of active investigation. Preclinical studies and early clinical trial results support this approach which may improve lung cancer treatment, with potentially prolonged survival and tolerable toxicity. In this review, we discuss the current status of epigenetic therapeutics and their combination with other antineoplastic therapies, including novel immunotherapies, in lung cancer management.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Filiz Oezkan
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
- Department of Interventional Pneumology, Ruhrlandklinik, West German
Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Michael Koenig
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Gregory A. Otterson
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - James Gordon Herman
- Department of Medicine, Division of Hematology/Oncology, University
of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai He
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Qi X, Jia B, Zhao X, Yu D. Advances in T-cell checkpoint immunotherapy for head and neck squamous cell carcinoma. Onco Targets Ther 2017; 10:5745-5754. [PMID: 29238207 PMCID: PMC5716310 DOI: 10.2147/ott.s148182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has been found to be a complex group of malignancies characterized by their profound immunosuppression and high aggressiveness. In most cases of advanced HNSCC, treatment fails to obtain total cancer cure. Efforts are needed to develop new therapeutic approaches to improve HNSCC outcomes. In this light, T-cells "immune checkpoint" has attracted much attention in cancer immunotherapy. It has been broadly accepted that inhibitory T-cell immune checkpoints contribute to tumor immune escape through negative immune regulatory signals (cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4], programmed cell death 1 [PD-1], B7-H3, and B7-H4, etc). Current data suggest that PD-1 and CTLA-4 receptors can inhibit T-cell receptors and T-cell proliferation. Blockade of PD-1/PD-L1 and/or CTLA-4/CD28 pathways has shown promising tumor outcomes in clinical trials for advanced solid tumors like melanoma, renal cell cancer, and non-small cell lung cancer. The present review attempts to explore what is known about PD-1/PD-L1 and CTLA-4/CD28 pathways with a focus on HNSCC. We further discuss how these pathways can be manipulated with therapeutic intent.
Collapse
Affiliation(s)
- Xinmeng Qi
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, Jilin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Bo Jia
- Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing People’s Republic of China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, Jilin
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, Jilin
| |
Collapse
|
15
|
Mett V, Komarova EA, Greene K, Bespalov I, Brackett C, Gillard B, Gleiberman AS, Toshkov IA, Aygün-Sunar S, Johnson C, Karasik E, Bapardekar-Nair M, Kurnasov OV, Osterman AL, Stanhope-Baker PS, Morrison C, Moser MT, Foster BA, Gudkov AV. Mobilan: a recombinant adenovirus carrying Toll-like receptor 5 self-activating cassette for cancer immunotherapy. Oncogene 2017; 37:439-449. [PMID: 28967901 PMCID: PMC5799711 DOI: 10.1038/onc.2017.346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 5 (TLR5) is considered an attractive target for anticancer immunotherapy. TLR5 agonists, bacterial flagellin and engineered flagellin derivatives, have been shown to have potent antitumor and metastasis-suppressive effects in multiple animal models and to be safe in both animals and humans. Anticancer efficacy of TLR5 agonists stems from TLR5-dependent activation of nuclear factor-κB (NF-κB) that mediates innate and adaptive antitumor immune responses. To extend application of TLR5-targeted anticancer immunotherapy to tumors that do not naturally express TLR5, we created an adenovirus-based vector for intratumor delivery, named Mobilan that drives expression of self-activating TLR5 signaling cassette comprising of human TLR5 and a secreted derivative of Salmonella flagellin structurally analogous to a clinical stage TLR5 agonist, entolimod. Co-expression of TLR5 receptor and agonist in Mobilan-infected cells established an autocrine/paracrine TLR5 signaling loop resulting in constitutive activation of NF-κB both in vitro and in vivo. Injection of Mobilan into primary tumors of the prostate cancer-prone transgenic adenocarcinoma of the mouse prostate (TRAMP) mice resulted in a strong induction of multiple genes involved in inflammatory responses and mobilization of innate immune cells into the tumors including neutrophils and NK cells and suppressed tumor progression. Intratumoral injection of Mobilan into subcutaneously growing syngeneic prostate tumors in immunocompetent hosts improved animal survival after surgical resection of the tumors, by suppression of tumor metastasis. In addition, vaccination of mice with irradiated Mobilan-transduced prostate tumor cells protected mice against subsequent tumor challenge. These results provide proof-of-concept for Mobilan as a tool for antitumor vaccination that directs TLR5-mediated immune response toward cancer cells and does not require identification of tumor antigens.
Collapse
Affiliation(s)
- V Mett
- Cleveland Biolabs Inc., Buffalo, NY, USA
| | - E A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K Greene
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - I Bespalov
- Cleveland Biolabs Inc., Buffalo, NY, USA
| | - C Brackett
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - B Gillard
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | - C Johnson
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - E Karasik
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - O V Kurnasov
- Infectious and Inflammatory Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - A L Osterman
- Infectious and Inflammatory Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - C Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - M T Moser
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - B A Foster
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - A V Gudkov
- Cleveland Biolabs Inc., Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
16
|
Sheng J, Fang W, Liu X, Xing S, Zhan J, Ma Y, Huang Y, Zhou N, Zhao H, Zhang L. Impact of gefitinib in early stage treatment on circulating cytokines and lymphocytes for patients with advanced non-small cell lung cancer. Onco Targets Ther 2017; 10:1101-1110. [PMID: 28260924 PMCID: PMC5328306 DOI: 10.2147/ott.s112158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives The impact of epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs) on the human immune system remains undefined. This study illustrates the immunomodulatory effect of gefitinib in patients with advanced non-small cell lung cancer (NSCLC) and its relevant prognostic significance. Patients and methods Peripheral blood samples were collected from 54 patients at baseline and after 4 weeks of gefitinib treatment. Circulating lymphocyte populations and cytokine levels were measured. Pilot investigation of the impact of gefitinib on programmed cell death ligand-1 (PD-L1) expression was conducted by immunohistochemistry (IHC). Results and conclusion A significant increase of peripheral natural killer cells and interferon-gamma (INF-γ) after 4 weeks of gefitinib treatment (P=0.005 and 0.02, respectively). In addition, circulating interleukin (IL)-6 was significantly decreased, especially in patients sensitive to gefitinib (P<0.001). Higher levels of IL-6 at baseline independently correlated with poorer progression-free survival. Experiments with NSCLC specimens illustrated that PD-L1 expression were downregulated after 4 weeks of gefitinib treatment. In summary, it was found that gefitinib treatment can alter circulating cytokines and lymphocytes. Dynamic changes of circulating lymphocytes, cytokines, and even PD-L1 IHC expression around gefitinib treatment support the specific immunomodulatory effect of this agent for advanced NSCLC.
Collapse
Affiliation(s)
- Jin Sheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Xia Liu
- Department of Medical Oncology
| | - Shan Xing
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
| | - Yan Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Ningning Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Li Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| |
Collapse
|
17
|
Beyranvand Nejad E, Welters MJP, Arens R, van der Burg SH. The importance of correctly timing cancer immunotherapy. Expert Opin Biol Ther 2016; 17:87-103. [PMID: 27802061 DOI: 10.1080/14712598.2017.1256388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The treatment options for cancer-surgery, radiotherapy and chemotherapy-are now supplemented with immunotherapy. Previously underappreciated but now gaining strong interest are the immune modulatory properties of the three conventional modalities. Moreover, there is a better understanding of the needs and potential of the different immune therapeutic platforms. Key to improved treatment will be the combinations of modalities that complete each other's shortcomings. Area covered: Tumor-specific T-cells are required for optimal immunotherapy. In this review, the authors focus on the correct timing of different types of chemotherapeutic agents or immune modulators and immunotherapeutic drugs, not only for the activation and expansion of tumor-specific T-cells but also to support and enhance their anti-tumor efficacy. Expert opinion: At an early phase of disease, clinical success can be obtained using single treatment modalities but at later disease stages, combinations of several modalities are required. The gain in success is determined by a thorough understanding of the direct and indirect immune effects of the modalities used. Profound knowledge of these effects requires optimal tuning of immunomonitoring. This will guide the appropriate combination of treatments and allow for correct sequencing the order and interval of the different therapeutic modalities.
Collapse
Affiliation(s)
- Elham Beyranvand Nejad
- a Department of Medical Oncology , Leiden University Medical Center , Leiden , The Netherlands.,b Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - Marij J P Welters
- a Department of Medical Oncology , Leiden University Medical Center , Leiden , The Netherlands
| | - Ramon Arens
- b Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - Sjoerd H van der Burg
- a Department of Medical Oncology , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
18
|
Khanna P, Blais N, Gaudreau PO, Corrales-Rodriguez L. Immunotherapy Comes of Age in Lung Cancer. Clin Lung Cancer 2016; 18:13-22. [PMID: 27461776 DOI: 10.1016/j.cllc.2016.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
Abstract
Lung carcinoma is the leading cause of death by cancer worldwide. When possible, surgery is the best treatment strategy for patients with non-small-cell lung cancer. However, even with curative-intent therapy, most patients will develop local or systemic recurrence and, ultimately, succumb to their disease. In recent years, evidence on the role of the antitumor activity of the immune system and the understanding of tumor immunosurveillance have resulted in the emergence of immunotherapy as a promising therapeutic approach in lung cancer. The main approaches are immune checkpoint inhibition, such as blockade of the cytotoxic T-lymphocyte antigen-4 and programmed cell death-1 receptors and the programmed cell death-1 ligand, and vaccine therapy, which elicits specific antitumor immunity against relevant tumor-associated antigens. We have reviewed recently reported results from clinical trials and the possible future role of vaccine therapy and immune checkpoint inhibition in the treatment of small cell lung cancer and non-small-cell lung cancer.
Collapse
Affiliation(s)
- Priyanka Khanna
- Centro de Investigación y Manejo del Cáncer (CIMCA), San Jose, Costa Rica
| | - Normand Blais
- Medical Oncology and Hematology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Pierre-Olivier Gaudreau
- Medical Oncology and Hematology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Luis Corrales-Rodriguez
- Medical Oncology, Centro de Investigación y Manejo del Cáncer (CIMCA), San Jose, Costa Rica.
| |
Collapse
|
19
|
Abstract
As the leading cause of cancer death worldwide, lung cancer continues to impose a major burden on healthcare systems and cause significant challenges for clinicians and patients. Most patients present with advanced disease at the time of diagnosis and have a poor prognosis, with the vast majority surviving less than 5 years. Although new therapies have been introduced in recent years that target molecular disease drivers present in a subset of patients, there is a significant need for treatments able to improve response and extend survival while minimizing effects on quality of life. Recent evidence of clinical efficacy for immunotherapeutic approaches for lung cancer suggests that they will become the next major therapeutic advance for this disease. Non-small-cell lung cancer, which accounts for approximately 85% of lung cancer cases, has historically been considered a nonimmunogenic disease; however, as with several other malignancies, recent data show that much of this lack of immune responsiveness is functional rather than structural (i.e., possible to overcome therapeutically). This review explores the key elements of the immune system involved in non-small-cell lung cancer and briefly examines immunotherapeutic strategies in development to shift the balance of immune activity away from a tumor-induced immune-suppressive state toward an active antitumor immune response.
Collapse
|
20
|
Ke X, Zhang S, Xu J, Liu G, Zhang L, Xie E, Gao L, Li D, Sun R, Wang F, Pan S. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation. Cancer Immunol Immunother 2016; 65:587-99. [PMID: 27000869 PMCID: PMC11028464 DOI: 10.1007/s00262-016-1825-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 03/07/2016] [Indexed: 12/27/2022]
Abstract
Patients with non-small-cell lung cancer (NSCLC) have immune defects that are poorly understood. Forkhead box protein P3 (Foxp3) is crucial for immunosuppression by CD4(+) regulatory T cells (Tregs). It is not well known how NSCLC induces Foxp3 expression and causes immunosuppression in tumor-bearing patients. Our study found a higher percentage of CD4(+) Tregs in the peripheral blood of NSCLC compared with healthy donors. NSCLC patients showed demethylation of eight CpG sites within the Foxp3 promoter with methylation ratios negatively correlated with CD4(+)CD25(+)Foxp3(+) T levels. Foxp3 expression in CD4(+) Tregs was directly regulated by Foxp3 promoter demethylation and was involved in immunosuppression by NSCLC. To verify the effect of tumor cells on the phenotype and function of CD4(+) Tregs, we established a coculture system using NSCLC cell line and healthy CD4(+) T cells and showed that SPC-A1 induced IL-10 and TGF-β1 secretion by affecting the function of CD4(+) Tregs. The activity of DNA methyltransferases from CD4(+) T was decreased during this process. Furthermore, eight CpG sites within the Foxp3 promoter also appeared to have undergone demethylation. Foxp3 is highly expressed in CD4(+) T cells, and this may be caused by gene promoter demethylation. These induced Tregs are highly immunosuppressive and dramatically inhibit the proliferative activity of naïve CD4(+) T cells. Our study provides one possible mechanism describing Foxp3 promoter demethylation changes by which NSCLC down-regulates immune responses and contributes to tumor progression. Foxp3 represents an important target for NSCLC anti-tumor immunotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Blotting, Western
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- CpG Islands/genetics
- CpG Islands/immunology
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/immunology
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- DNA Methylation/immunology
- DNA Methyltransferase 3A
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/immunology
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Xing Ke
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Shuping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Lixia Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Erfu Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Li Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Daqian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China.
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.
- National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, 210029, Nanjing, China.
| |
Collapse
|
21
|
Abstract
Context
Although most primary cancers of the lung carry a heavy mutational load and will potentially present many “nonself” antigens to the immune system, there are a wide range of possible mechanisms for tumors to avoid so-called immune surveillance. One such mechanism is the adoption of immune checkpoints to inhibit the host immune response. Immune checkpoint inhibitors show great promise in the treatment of advanced non–small cell lung cancer.
Objective
—To discuss the possibility of biomarker selection of patients for these therapies. This is becoming a much debated issue, and the immunohistochemical detection of Programmed Death Ligand 1 (PD-L1), the ligand for the inhibitory Programmed Death receptor 1 (PD-1) checkpoint, is one possible biomarker. Data so far available show some conflicting results, but PD-L1 immunohistochemistry looks likely to be introduced into clinical use for selecting patients for treatment with anti–PD-1 or anti–PD-L1 therapies. Given that there are 4 such drugs rapidly approaching regulatory approval, each with its own independent PD-L1 immunohistochemistry biomarker test, both oncologists and pathologists face some significant challenges.
Data Sources
Peer-reviewed literature and meeting proceedings, especially during the last 12 months, were used.
Conclusions
—The biology of PD-1/PD-L1 is complex, the clinical data for these drugs show considerable variation, the selection performance of the PD-L1 biomarker test is not perfect, and the existence of 4 drug/test combinations adds significantly to the problems faced. This article addresses some of the background to this therapeutic problem and discusses some of the issues ahead.
Collapse
Affiliation(s)
- Keith M. Kerr
- From the Department of Pathology, Aberdeen University School of Medicine (Dr Kerr), and the Department of Oncology (Dr Nicolson), Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | | |
Collapse
|
22
|
Clarke R, Tyson JJ, Dixon JM. Endocrine resistance in breast cancer--An overview and update. Mol Cell Endocrinol 2015; 418 Pt 3:220-34. [PMID: 26455641 PMCID: PMC4684757 DOI: 10.1016/j.mce.2015.09.035] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Georgetown University Medical Center, Washington DC 20057, USA.
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - J Michael Dixon
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| |
Collapse
|
23
|
Regan D, Guth A, Coy J, Dow S. Cancer immunotherapy in veterinary medicine: Current options and new developments. Vet J 2015; 207:20-28. [PMID: 26545847 DOI: 10.1016/j.tvjl.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Excitement in the field of tumor immunotherapy is being driven by several remarkable breakthroughs in recent years. This review will cover recent advances in cancer immunotherapy, including the use of T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B cell and T cell antibodies. Inhibition of T cell checkpoint molecules such as PD-1 and CTLA-4 using monoclonal antibodies has achieved notable success against advanced tumors in humans, including melanoma, renal cell carcinoma, and non-small cell lung cancer. Therapy with engineered T cells has also demonstrated remarkable tumor control and regression in human trials. Autologous cancer vaccines have recently demonstrated impressive prolongation of disease-free intervals and survival times in dogs with lymphoma. In addition, caninized monoclonal antibodies targeting CD20 and CD52 just recently received either full (CD20) or conditional (CD52) licensing by the United States Department of Agriculture for clinical use in the treatment of canine B-cell and T-cell lymphomas, respectively. Thus, immunotherapy for cancer is rapidly moving to the forefront of cancer treatment options in veterinary medicine as well as human medicine.
Collapse
Affiliation(s)
- Daniel Regan
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Amanda Guth
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Jonathan Coy
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Steven Dow
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA.
| |
Collapse
|
24
|
Role of rebiopsy in relapsed non-small cell lung cancer for directing oncology treatments. JOURNAL OF ONCOLOGY 2015; 2015:809835. [PMID: 25699082 PMCID: PMC4325200 DOI: 10.1155/2015/809835] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/29/2022]
Abstract
Background. Currently, few rebiopsies are performed in relapses of advanced non-small cell lung cancer. They are not customary in clinical practice of lung cancer. However, it is not possible to properly target treatments in cases of relapse without knowing the nature of new lesions. Design. This paper comprehensively summarizes the available literature about rebiopsy and broadly discusses the importance of rebiopsy in advanced non-small cell lung cancer. Results. Altogether 560 abstracts were used as material for further analysis. 19 articles were about clinical rebiopsy in lung cancer and were reviewed in detailed manner. Conclusions. This review shows that rebiopsy is feasible in non-small cell lung cancer, and success rates can be high if rebiopsy is accompanied by adequate evaluation before biopsy. Its use may resolve the difficulties in sampling bias and detecting changes in cancer characteristics. In cases where treatment was selected based on tissue characteristics that then change, the treatment selection process must be repeated while considering new characteristics of the tumor. Rebiopsy may be used to predict therapeutic resistance and consequently redirect targeted therapies. Such knowledge may resolve the difficulties in sampling bias and also in selecting preexisting clones or formulating drug-resistant ones. Rebiopsy should be performed more often in non-small cell lung cancer.
Collapse
|
25
|
Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, Yang J, Seestaller-Wehr L, Zhang SY, Hopson C, Tsvetkov L, Jing J, Zhang S, Smothers J, Hoos A. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on Immune Function and in Combination with Immunomodulatory Antibodies Targeting PD-1, PD-L1, and CTLA-4. Clin Cancer Res 2015; 21:1639-51. [PMID: 25589619 DOI: 10.1158/1078-0432.ccr-14-2339] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
PURPOSE To assess the immunologic effects of dabrafenib and trametinib in vitro and to test whether trametinib potentiates or antagonizes the activity of immunomodulatory antibodies in vivo. EXPERIMENTAL DESIGN Immune effects of dabrafenib and trametinib were evaluated in human CD4(+) and CD8(+) T cells from healthy volunteers, a panel of human tumor cell lines, and in vivo using a CT26 mouse model. RESULTS Dabrafenib enhanced pERK expression levels and did not suppress human CD4(+) or CD8(+) T-cell function. Trametinib reduced pERK levels, and resulted in partial/transient inhibition of T-cell proliferation/expression of a cytokine and immunomodulatory gene subset, which is context dependent. Trametinib effects were partially offset by adding dabrafenib. Dabrafenib and trametinib in BRAF V600E/K, and trametinib in BRAF wild-type tumor cells induced apoptosis markers, upregulated HLA molecule expression, and downregulated certain immunosuppressive factors such as PD-L1, IL1, IL8, NT5E, and VEGFA. PD-L1 expression in tumor cells was upregulated after acquiring resistance to BRAF inhibition in vitro. Combinations of trametinib with immunomodulators targeting PD-1, PD-L1, or CTLA-4 in a CT26 model were more efficacious than any single agent. The combination of trametinib with anti-PD-1 increased tumor-infiltrating CD8(+) T cells in CT26 tumors. Concurrent or phased sequential treatment, defined as trametinib lead-in followed by trametinib plus anti-PD-1 antibody, demonstrated superior efficacy compared with anti-PD-1 antibody followed by anti-PD-1 plus trametinib. CONCLUSION These findings support the potential for synergy between targeted therapies dabrafenib and trametinib and immunomodulatory antibodies. Clinical exploration of such combination regimens is under way.
Collapse
Affiliation(s)
- Li Liu
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Patrick A Mayes
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Stephen Eastman
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Hong Shi
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Sapna Yadavilli
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Tianqian Zhang
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Jingsong Yang
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | | | - Shu-Yun Zhang
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Chris Hopson
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Lyuben Tsvetkov
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Junping Jing
- Molecular Medicine Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Shu Zhang
- Statistical Science, GlaxoSmithKline, Collegeville, Pennsylvania
| | - James Smothers
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Axel Hoos
- Immuno-Oncology and Combination DPU, GlaxoSmithKline, Collegeville, Pennsylvania.
| |
Collapse
|
26
|
Li X, Mei Q, Nie J, Fu X, Han W. Decitabine: a promising epi-immunotherapeutic agent in solid tumors. Expert Rev Clin Immunol 2015; 11:363-75. [DOI: 10.1586/1744666x.2015.1002397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Xia W, Wang J, Xu Y, Jiang F, Xu L. L-BLP25 as a peptide vaccine therapy in non-small cell lung cancer: a review. J Thorac Dis 2014; 6:1513-20. [PMID: 25364531 DOI: 10.3978/j.issn.2072-1439.2014.08.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/03/2014] [Indexed: 12/30/2022]
Abstract
Lung cancer is one of the most prevalent malignancies worldwide and the leading cause of cancer-related death. Most cases are non-small cell lung cancer (NSCLC). The median overall survival of patients with advanced stage undergoing current standard chemotherapy is approximately 10 months. The addition of new compounds, including targeted agents, to standard first-line cytotoxic doublets, which are administered concurrently and/or as maintenance therapy in patients who have not experienced disease progression after first-line treatment, has shown potential in improving the efficacy in patients with advanced disease. L-BLP25 is a mucin 1 (MUC1) antigen-specific immunotherapy induces a T-cell response to MUC1 in both a preclinical MUC1-transgenic lung cancer mouse model and patients. This review is aimed at introducing the mechanism by which L-BLP25 targets MUC1, summarizing the achievements gained in the completed clinical trials with L-BLP25 administered as maintenance therapy in the treatment of unresectable stage III/IV NSCLC, and discussing the research trends.
Collapse
Affiliation(s)
- Wenjie Xia
- 1 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China ; 2 The Fourth Clinical College of Nanjing Medical University, Nanjing 210000, China ; 3 The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Jie Wang
- 1 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China ; 2 The Fourth Clinical College of Nanjing Medical University, Nanjing 210000, China ; 3 The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Youtao Xu
- 1 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China ; 2 The Fourth Clinical College of Nanjing Medical University, Nanjing 210000, China ; 3 The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Feng Jiang
- 1 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China ; 2 The Fourth Clinical College of Nanjing Medical University, Nanjing 210000, China ; 3 The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Lin Xu
- 1 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China ; 2 The Fourth Clinical College of Nanjing Medical University, Nanjing 210000, China ; 3 The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
28
|
Katz T, Avivi I, Benyamini N, Rosenblatt J, Avigan D. Dendritic cell cancer vaccines: from the bench to the bedside. Rambam Maimonides Med J 2014; 5:e0024. [PMID: 25386340 PMCID: PMC4222413 DOI: 10.5041/rmmj.10158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both "passive" (e.g. strategies relying on the administration of specific T cells) and "active" vaccines (e.g. peptide-directed or whole-cell vaccines) have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines) are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target "immunosuppressive checkpoints" (anti-CTLA-4, PD-1, etc.) is likely to improve and maintain immune response induced by vaccination.
Collapse
Affiliation(s)
- Tamar Katz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Irit Avivi
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Noam Benyamini
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Jacalyn Rosenblatt
- Hematological Malignancies and Bone Marrow Transplantation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Avigan
- Hematological Malignancies and Bone Marrow Transplantation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Hirsh V. nab-paclitaxel for the management of patients with advanced non-small-cell lung cancer. Expert Rev Anticancer Ther 2014; 14:129-41. [PMID: 24467217 DOI: 10.1586/14737140.2014.881719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 130 nm albumin-bound form of paclitaxel, nab-paclitaxel (Abraxane(®)), was recently approved by the US FDA for the first-line treatment of locally advanced or metastatic non-small-cell lung cancer (NSCLC) in combination with carboplatin in patients who are not candidates for curative surgery or radiation therapy. In a Phase III registrational trial, nab-paclitaxel plus carboplatin demonstrated a significantly improved overall response rate, the primary endpoint, and a trend toward improved survival compared with solvent-based paclitaxel plus carboplatin in patients with advanced NSCLC. Significantly less neutropenia, neuropathy, arthralgia, and myalgia were observed with the nab-paclitaxel regimen, but the solvent-based paclitaxel regimen produced less thrombocytopenia and anemia. The clinical experience with nab-paclitaxel to date and the role of this newly approved therapy in the management of NSCLC will be summarized in this article.
Collapse
Affiliation(s)
- Vera Hirsh
- Royal Victoria Hospital and Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Bauzon M, Hermiston T. Armed therapeutic viruses - a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol 2014; 5:74. [PMID: 24605114 PMCID: PMC3932422 DOI: 10.3389/fimmu.2014.00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
For the past 150 years cancer immunotherapy has been largely a theoretical hope that recently has begun to show potential as a highly impactful treatment for various cancers. In particular, the identification and targeting of immune checkpoints have given rise to exciting data suggesting that this strategy has the potential to activate sustained antitumor immunity. It is likely that this approach, like other anti-cancer strategies before it, will benefit from co-administration with an additional therapeutic and that it is this combination therapy that may generate the greatest clinical outcome for the patient. In this regard, oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these immune-modulating therapies in a highly targeted and economically advantageous way over current treatment. In this review, we discuss the blockade of immune checkpoints, how oncolytic viruses complement and extend these therapies, and speculate on how this combination will uniquely impact the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Maxine Bauzon
- Bayer HealthCare, US Innovation Center, Biologics Research , San Francisco, CA , USA
| | - Terry Hermiston
- Bayer HealthCare, US Innovation Center, Biologics Research , San Francisco, CA , USA
| |
Collapse
|
31
|
|
32
|
Ma L, Zhang S. [Advances of molecular targeted therapy in squamous cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2013; 16:671-5. [PMID: 24345494 PMCID: PMC6000638 DOI: 10.3779/j.issn.1009-3419.2013.12.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
肺鳞癌(squamous-cell lung cancer, SQCLC)是一种常见的肺癌病理类型,全世界每年约40余万人死于肺鳞癌,发病与吸烟密切相关。然而,研究表明,在肺腺癌中有明显疗效的靶向药物却无法让肺鳞癌患者获益,如人表皮生长因子受体(epidermal growth factor receptor, EGFR)抑制剂、间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)抑制剂等。通过大量基因组学研究表明,纤维母细胞生长因子受体1(fibroblast growth factor receptor 1, FGFR1)基因扩增和盘状结构域受体2(the discoidin domain receptor 2, DDR2)基因突变等都可能成为新的用于治疗肺鳞癌的潜在药物分子靶点。此外,肺鳞癌患者基因组中也存在特异性的基因变异位点,这些改变在肺鳞癌细胞周期调控、氧化应激反应、细胞凋亡和鳞状上皮分化过程中发挥了重要作用,也可能为寻找候选分子靶点提供依据。本综述通过回顾近年来肺鳞癌分子靶向治疗的相关研究,分析靶向治疗在肺鳞癌中的研究进展,使肺鳞癌的个体化靶向治疗成为可能。
Collapse
Affiliation(s)
- Li Ma
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | | |
Collapse
|